
Gregory T. Brown

Programming
Beyond Practices
BE MORE THAN JUST A CODE MONKEY

Gregory T. Brown

Programming Beyond Practices
Be More Than Just a Code Monkey

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-94382-3

[LSI]

Programming Beyond Practices
by Gregory T. Brown

Copyright © 2017 Gregory Brown. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Jeff Bleiel
Production Editor: Kristen Brown
Copyeditor: Stephanie Morillo
Proofreader: Rachel Monaghan

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2016: First Edition

Revision History for the First Edition
2016-10-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491943823 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Programming Beyond Practices, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491943823

Table of Contents

About This Book. v

1. Using Prototypes to Explore Project Ideas. 1
Start by understanding the needs behind the project 2
Use wireframes to set expectations about functionality 2
Set up a live test system as soon as you start coding 4
Discuss all defects, but be pragmatic about repairs 7
Check your assumptions early and often 8
Limit the scope of your work as much as possible 9
Remember that prototypes are not production systems 13
Design features that make collecting feedback easy 14

2. Spotting Hidden Dependencies in Incremental Changes. 21
There’s no such thing as a standalone feature 22
If two features share a screen, they depend on each other 23
Avoid non-essential real-time data synchronization 26
Look for problems when code is reused in a new context 27

3. Identifying the Pain Points of Service Integrations. 31
Plan for trouble when your needs are off the beaten path 32
Remember that external services might change or die 34
Look for outdated mocks in tests when services change 36
Expect maintenance headaches from poorly coded robots 38
Remember that there are no purely internal concerns 40

4. Developing a Rigorous Approach Toward Problem Solving. 43
Begin by gathering the facts and stating them plainly 44
Work part of the problem by hand before writing code 46

iii

Validate your input data before attempting to process it 48
Make use of deductive reasoning to check your work 51
Solve simple problems to understand more difficult ones 52

5. Designing Software from the Bottom Up. 59
Identify the nouns and verbs of your problem space 60
Begin by implementing a minimal slice of functionality 61
Avoid unnecessary temporal coupling between objects 64
Gradually extract reusable parts and protocols 67
Experiment freely to discover hidden abstractions 71
Know where the bottom-up approach breaks down 73

6. Data Modeling in an Imperfect World. 75
Decouple conceptual modeling from physical modeling 76
Design an explicit model for tracking data changes 78
Understand how Conway’s Law influences data management practices 83
Remember that workflow design and data modeling go hand in hand 85

7. Gradual Process Improvement as an Antidote for Overcommitment. 91
Respond to unexpected failures with swiftness and safety 92
Identify and analyze operational bottlenecks 94
Pay attention to the economic tradeoffs of your work 95
Reduce waste by limiting work in progress 98
Make the whole greater than the sum of its parts 102

8. The Future of Software Development. 107

Acknowledgments. 117

O’Reilly Media, Inc.. 119

Index. 121

iv | Table of Contents

About This Book

This is not a textbook. It is a collection of short stories meant to help you refine your
way of thinking about and working on software projects.

You won’t find any neatly packaged prescriptive advice within these pages. Instead,
you will see example after example of the many problems we encounter as practicing
developers, and the thought process involved in discovering how to solve them.

To encourage you to read this work in a way that brings out your creative side, I made
you the main character in each of its stories. This will undoubtedly feel a bit weird to
you, and even as I write this introduction, it feels weird to me, too!

My hope is that by embedding you in the work, this book can be more than just
another stream of stern admonitions flowing down from the hilltops where Expert
Programmers live. Instead, I want you to ask questions like, “If I were in this situa‐
tion, would I really do things this way? If not, why not?”

As you read this book, I invite you to shine the light inward and question your own
practices, habits, and perspectives at a deeper level. For best results, keep a journal
nearby while reading and then share whatever ideas you jot down with your friends
and coworkers. The concepts in this work are meant to be thought about and dis‐
cussed, not just consumed.

In each story, you’ll wear a different hat as you navigate your way through imaginary
worlds that have been carefully constructed to teach you useful lessons. But the most
important lesson of all will come from noticing the friction points and meaningful
differences between the real you and the characters I’ve written for you.

Yes, that sounds a bit ambitious. But the entire point of reading or writing a book is to
stretch ourselves a little bit, to become better at what we do. We’re in this together,
and with your help, I think we’ll do just fine.

Buckle up, friend. It’s time for our journey to begin.

v

The Journey
The story arc of this book covers a full career in software development, condensed
down into a quick read that is meant to be accessible to all practicing developers.

Chapter 1: You are a competent programmer, and you are putting your skills to good
use by helping people explore new product ideas through rapid prototyping.

Chapter 2: Your work becomes more complicated. You need to incrementally grow
existing systems and you have many active customers to support. There’s a feeling of
conflict between what you think is the right way to work, and the pressure around
you to ship new features quickly.

Chapter 3: You gain a deeper understanding of the costs of rushed decision making,
especially at the integration points between your own code and the outside world.
You’ve learned a great deal from past mistakes, and have started to focus on the com‐
plex relationships between business, customer service, and technical work.

Chapter 4: You are now a highly experienced developer. You are capable of helping
others understand how to think about programming and problem solving, and have
started to mentor a friend who is new to the field.

Chapter 5: You’ve become an effective teacher, and your development experience is
strong enough that you’re able to think on your feet, even in the context of live dem‐
onstrations. You use these skills to help students bridge the gap between theory and
practice in a classroom setting.

Chapter 6: You are starting to progress down the path to mastery. You’re able to pin‐
point the weak spots of legacy software systems and design proper replacements for
them, optimizing for both business outcomes and human-friendly workflows.

Chapter 7: You now have enough familiarity with the whole business of software that
you’re capable of working within an organization to identify and fix problems at
every level. Your core competency is still in software development, but you’ve gained
enough experience to communicate well at many levels.

Chapter 8: You start to wonder about the future of the computing industry as a
whole. At this point, you’re free to pick your own career path, so figuring out where
you’re going and why starts to be the most important question.

Because the career of a software developer is more like a spiral than a line, I encourage
you to read through all of these chapters, no matter what your current skill level is.

I’ve written these stories to work at many levels, and there’s no dividing line between the
“basic” and “advanced” topics in this book. Each chapter is self-contained, so jumping
around is alright...but for best results, read from cover to cover.

vi | About This Book

CHAPTER 1

Using Prototypes to Explore Project Ideas

Imagine that you work for an agency that helps clients navigate the
early stages of product design and project planning.

No matter what problem space you are working in, the first step is always to get ideas
out of a client’s head and into the world as quickly as you possibly can. Conversations
and wireframes can be useful for finding a starting point, but exploratory program‐
ming soon follows because words and pictures alone can only take you so far.

By getting working software into the mix early in the process, product design
becomes an interactive collaboration. Fast feedback loops allow stumbling blocks to
be quickly identified and dealt with before they can burn up too much time and
energy in the later (and more expensive) stages of development.

There are many moving parts in even the most simple software systems, so it pays to
set them in motion early on to discover how they interact with one another. In some
ways every project is different, but in this sense every project is the same.

This week, you will work with your pairing partner Samara to develop a functional
prototype of a music video recommendations system. The initial feature set does not
need to be perfectly polished; it just needs to be useful enough to collect feedback
from people who may find the product interesting.

In this chapter…

You will learn how exploratory programming techniques can be
used to build and ship a meaningful proof of concept for a product
idea within hours after development begins.

1

Start by understanding the needs behind the project
This music recommendations project is brand new, so you don’t know at all what to
expect yet. You get together with the client (Ross) for a quick chat to kick things off:

You: Hi Ross! Thanks for meeting with me. My pairing partner (Samara) is listening in
as well. We’re ready to get started if you are.
Ross: Yep, I’m ready. What’s the first step?
You: Well, first of all, I’d like to hear about what got you interested in music video rec‐
ommendations. Knowing where an idea came from helps us figure out what to focus
on in our prototypes.
Ross: OK, sure. We’ve been running a blog where we post curated lists of music videos
for a few years now. We have collaborators who specialize in building lists for many
kinds of music, and people usually find our posts through organic search.
Over the years, we’ve shared over 4,000 videos on our site. That’s a massive library of
music, but the only way to navigate it right now is one blog post at a time.
We started to think through ideas on how to make our collection easier to explore.
After considering some options, we decided that building some sort of recommenda‐
tions system might be the way to go.
The initial version can be simple, but we’d like to get something in front of a few dozen
of our most active community members and blog contributors as soon as we can.
You: Sounds like a great project! Let’s dig in.

With the basic theme sorted out, you talk for a few more minutes with Ross about
how to get a rough proof of concept put together. One question that often comes up
in projects like this is whether the new work will be a standalone project or will need
to integrate into some existing system.

In this case, Ross isn’t entirely sure what he wants. But when you suggest that it might
make sense to bring the question up later in order to focus all of the team’s energy on
figuring out whether the idea will even work, he agrees.

You talk through ways to make the prototype a bit more approachable to the readers
of the music video blog and come up with a simple solution: use the blog itself to find
the videos that’ll serve as samples in the prototype. This way, the content within the
new recommendations system will be familiar to both Ross and the readers of his
blog, and there will be a clear connection between the new application and the origi‐
nal website even if they’re technically operating in two totally separate codebases.

Use wireframes to set expectations about functionality
With a few of the big picture ideas sorted out, you shift your focus back to figuring
out how to get started on the first iteration of the project. Wireframe diagrams are
usually helpful at this stage, because they allow you to communicate the basic struc‐

2 | Chapter 1: Using Prototypes to Explore Project Ideas

1 This idea from Ward Cunningham serves as a reminder to focus on the goal that is driving your work, rather
than getting lost in thoughts about imagined future costs and benefits.

ture of what you’re about to build, while creating a shared understanding of the work
to be done—without getting bogged down in implementation details.

Rather than getting into a long discussion about different ways of implementing a
recommendations system, you suggest starting with what might be “The Simplest
Thing That Could Possibly Work.”1

You: For our first attempt at a basic user interface, we might start with a page where
the video player is displayed front and center. Underneath the player, there will be a
few thumbnail images of recommended videos, which will be selected based on what‐
ever is currently playing. Does that sound alright?
Ross: Sure, seems reasonable. I’ll know better when I see it, though.
You: While we’ve been chatting, Samara has been working on a wireframe sketch that
might serve as a good starting point. One second, I’ll upload it…

You: What do you think? We’re trying to keep things as simple as possible to start with.

Use wireframes to set expectations about functionality | 3

http://pbpbook.com/wardc

Ross: That looks fine. It’s similar to how I’ve seen video players work elsewhere on the
Web, and that will probably make it easy for our users to understand it.
You: Great! Before we take our conversation any further, Samara and I would like to
put together something similar to this sketch as an actual web page. We’re just going to
use placeholder images for everything, so this won’t take us long, but it will help us test
a few basic assumptions that will inform the rest of our work.
Ross: Sure, if you think that will help, go for it.

You are ready to dig in, but Samara appears to be lost in thought. When you ask her
what’s wrong, she explains that an idea for a better interface popped into her mind at
the exact moment you asked Ross for feedback on her sketch.

Instead of the original workflow, Samara suggests building a player that would show a
single video at a time with “thumbs up” and “thumbs down” buttons to allow viewers
to indicate their preferences, and a single big “next video” button that would cause a
new recommended video to begin playing immediately. This would be roughly simi‐
lar to flipping through TV channels, but in a smart system that can guess what you
might want to watch next.

This is a great idea, but it wouldn’t be quite as easy to implement. After a brief discus‐
sion about the tradeoffs, Samara accepts the idea of trying out the more simple
approach first, since it provides a faster path toward putting the project into the
hands of the real people that might put it to good use.

Set up a live test system as soon as you start coding
The point of rapid prototyping is to reduce distance between everyone involved in a
project: both between developer and client, and between client and customer.

To serve both of these purposes, having a running system that everyone can interact
with is essential; it promotes trying things out rather than simply talking about them,
and makes it easier to share progress as you go. With this in mind, you begin the
usual chores involved in getting a web application up and running on the Internet.

Because you are using a decent application hosting platform, this mostly means set‐
ting up a generic “Hello World” page using your favorite web framework, and then
pushing the code to a Git repository that detects the toolchain you are using. From
there, the platform takes care of installing all the necessary dependencies and starting
up a web server automatically.

Although it’s running one of those weird URLs that looks like baby-robot-pants-
suit.somehostingprovider.com, the application is live on the Internet within minutes.

4 | Chapter 1: Using Prototypes to Explore Project Ideas

2 You aren’t gonna need it (YAGNI)—A design principle that says functionality should not be added until it’s
truly necessary to do so.

At this stage, you have no clue what the production environment will end up looking
like for the finished project and you don’t really care. You’re building exploratory fea‐
tures that serve the purpose of getting useful feedback from the client’s target audi‐
ence, and your code will be thrown away before the finished product ships anyway.

You cut every possible corner when it comes to infrastructure—you don’t even set up
a database system right away, because it’s not yet clear whether one will be needed or
not. Massive underinvestment is the name of the game here, and you manage to pull
it off skillfully.

“Should we bother doing any sort of custom styling for this?” Samara asks.

You pause for a moment and think about it. But then you remember the YAGNI prin‐
ciple,2 and the answer becomes clear.

“Nope. If the goal of this prototype was to make some sort of slick demo software for
a marketing screencast, we’d want to focus on the looks from the get-go. But in this
case, I think that Ross just wants to get this in front of a few of his friends to see what
they think of it functionality-wise. On top of that, since this is a simple video playing
application, the interface is going to be pretty minimal no matter what.”

Samara seems convinced by your answer, even though you’ve once again chosen the
expedient path over the elegant one. But you’ve worked together for long enough
where this is just something you’re both used to by now; there have been plenty of
times where Samara has kept you from overthinking things, too.

You spend a few minutes wiring up the CSS framework you usually use while Samara
pieces together some placeholder images. Once that work is done, you write some
simple HTML to align the images in a grid layout with some hardcoded captions.

You spend just a little too long trying to figure out exactly where song titles should be
placed and what size they should be. But then you remember two important points:
none of those details matter right now, and it’s time to get some lunch!

You deploy the code as-is, and a minute later the page is live on the Web:

Set up a live test system as soon as you start coding | 5

http://pbpbook.com/yagni

It really doesn’t look like anything special, and you start to worry that the client will
not understand why you might want to show him something this minimal.

To check your assumptions, you ask Samara what she thinks. She points out that not
even the most simple things survive first contact with the customer, and that it would
be better to ask for feedback too early than it would be to wait too long.

Feeling reassured, you remind yourself that the real goal of this first iteration is to set
up a running system that will allow you to rapidly deploy new changes and kickstart
the discovery process. From here on out, the client can directly interact with the soft‐
ware, and that will help you move a lot faster.

You send out a quick message to Ross letting him know that you have something
ready for him to review, and you take a short break while waiting for a response.

6 | Chapter 1: Using Prototypes to Explore Project Ideas

Discuss all defects, but be pragmatic about repairs
When you return to your desk, you find feedback from Ross waiting for you:

Hello developer friends!
I just got the chance to try this out. On my laptop, the page looks pretty much like
what you showed me in Samara’s sketch, so no complaints there.
I also tried to load the page on my phone, but things look awkward there. All of the
videos take up the full width of the screen, and the recommendations are displayed in
one long column rather than being shown side by side.
We definitely don’t need to make this thing look beautiful any time soon, but it seems
like we should at least try to make sure all the recommendations are visible on a single
screen, rather than having to scroll past a bunch of full-size videos.
Is that something you think you can do something about?
-Ross

As Samara predicted, something did manage to slip through the cracks, even in this
extraordinarily simple first iteration. It’s impossible to entirely guard yourself from
making mistakes, but how you respond to them is critical.

You know that you can’t leave the mobile UI question unanswered, but you don’t
want to dwell on it either. A reasonable response would be to draw up a fresh wire‐
frame to communicate what the site should look like when rendered correctly.

Samara begins looking at a few popular video-based sites on her phone and finds that
several of them use a common layout. She then sketches up something similar, but
stripped down to the bare essentials.

Discuss all defects, but be pragmatic about repairs | 7

You send the wireframe along to Ross, and then spend a few moments talking over
next steps with him:

Ross: Thanks for the drawing! It looks like a decent starting point.
You: That’s great to hear. Now we have a decision to make: do we work on fixing the
mobile layout issue right away, or do we put it off until later?
Samara and I think that it may be worth implementing some useful recommendations
functionality first, and then revisit UI questions down the line.
That said, if you feel that a mobile-friendly design is essential even during the early
stages of gathering feedback, we can take care of this before we move on.
Ross: Is this kind of issue harder to fix later than it would be to deal with up front?
You: I don’t think so. Most of the work on the recommendations system will be under
the hood, and so the desktop UI shouldn’t need to change much. And if for some rea‐
son we do need to make major UI changes, we’d need to go back to the drawing board
for the mobile sketches anyway.
Ross: OK, let’s wait a bit then. If any of our early testers complain about not being able
to easily use this on their phones I may change my mind, but we can wait until we start
collecting some feedback to worry about that.

Whenever you find a flaw in your software, it is tempting to drop what you’re doing
to work on repairs right away. But in the exploratory stages of a project, it’s important
to balance the cost of each defect you encounter with the cost of the time it might
take to fix it.

In this particular case, time not spent on dealing with minor style tweaks on mobile is
time that could be spent exploring the music video data sets and trying to come up
with some recommendations rules. But by putting together a rough plan for how to
fix the issue and communicating your ideas to the client, you eliminated some risks
up front without having to invest a huge amount of effort.

Check your assumptions early and often
Early conversations with Ross have hinted that he is just trying to build something
fun for his music community, a much easier problem to solve than “trying to create
the most sophisticated predictive music playing service in the entire world!” or any‐
thing else along those lines.

However, it always pays to check assumptions on things like this as early in the pro‐
cess as possible. The initial wireframe sketches focused on what the UI for the appli‐
cation might look like, but now it is time to discuss how it should work:

8 | Chapter 1: Using Prototypes to Explore Project Ideas

You: Now I’ll ask a more technical question…
What kind of rules should we use to implement recommendations?
Ross: Oh… hmm… I was hoping you might have some insights into that. Up until a
few weeks ago, it didn’t even occur to us that this project might be worth working on,
so it isn’t something we’ve done a ton of research on yet.
You: Well, there are a bunch of options here, ranging from basic category matching to
very sophisticated approaches involving machine learning. It really depends, and
although we could probably help you get a jump start no matter what, it isn’t an area
we specialize in.
Ross: I’m not sure if it’s helpful, but our blog posts are all curated lists (e.g. “Ten great
Miles Davis tunes you’ve probably never listened to,” “A collection of live hip-hop per‐
formances from 1980s New York,” “Family favorites for the Christmas season”).
Our goal with this recommendations tool would be to help cut across these lists so that
the listener can find other things they might like. So, for example, they might be listen‐
ing to a 1980s hip-hop recording that was live in New York, and then we’d find other
songs by that same artist, or we’d find other 1980s hip-hop songs, etc.
You: OK, this gives us something to think on, thanks. I think Samara and I might let
these ideas percolate for a little while, and then we’ll have more to show you sometime
tomorrow. Does that sound good?
Ross: Absolutely! Thanks for the work so far; this was fun.

This conversation confirms that a simple recommendations system might be good
enough and that Ross is flexible about its implementation details. You may have
lucked out in this case, but if he had a more complicated idea in mind, it would have
been better to find out sooner rather than later. So it never hurts to ask!

Limit the scope of your work as much as possible
Everything up until this point was just about finding an entry point into the project,
but now it is time to roll up your sleeves and get some real work done. There are still
plenty of unknowns to work out, and just studying Samara’s original sketches for a
few minutes generates many questions about implementation details:

Limit the scope of your work as much as possible | 9

These questions crop up in a non-linear fashion, but before you can do any useful
work, you’ll need to prioritize them somehow.

Of the five important issues you and Samara have identified, two appear to be low-
hanging fruits: how to generate embed codes for videos, and how to construct URLs
for thumbnail images.

You pull up the music blog that Ross manages and check to see what video hosting
service they’re using. You also click through a few posts and check their source code
to see how things are structured.

“Most posts use only embedded videos from FancyVideoService. The embed codes
follow a standard format; the only thing that differs from video to video is its unique
identifier.”

“How about thumbnails? What do those look like?”

You hesitate for a moment, and then your clicking on various blog links intensifies,
until you are convinced that you aren’t getting anywhere.

10 | Chapter 1: Using Prototypes to Explore Project Ideas

“It doesn’t look like they actually use thumbnails on their site. Everything I’ve seen so
far is just embedded videos. So I guess we’ll need to look that up.”

You search the Web for a few minutes, but don’t find any official documentation from
FancyVideoService about how to grab thumbnails for their videos. You do, however,
find a blog post that describes the URL format they use internally, and it’s easy to gen‐
erate these links using the same unique identifier that is used in video embed codes.

You manually create a few thumbnail URLs based on the videos from Ross’s blog.
They seem to work fine, although it is questionable whether this is actually a sup‐
ported use case. For now, you hope for the best, but you’ll need to get in touch with
FancyVideoService to confirm that this approach is legitimate before the project
wraps up.

With these chores out of the way, you can go back to the more subjective questions
that came up when you were reviewing the mockup: what data to collect about each
music video, how to go about storing that data, and how to use the data to generate
useful recommendations behavior.

You and Samara start to talk through options, but then realize you’re getting too far
out into the weeds. So you go back to the classic question: “What is the simplest thing
that could possibly work?”

After a few moments of quiet rumination, Samara gets a burst of inspiration.

“What if we started with artist matching? Based on whatever video is playing, ran‐
domly pick a few more songs by that same artist.”

“Good idea. I think we’ll need something more complicated before Ross sends this
out for feedback, but I’m just really itching to get something on the screen that we
can interact with right now.”

Artist matching is an easy starting point, because all that is needed are video identifi‐
ers from FancyVideoService, song names, and artist names. If you grab a couple
dozen songs from Ross’s blog, that would be a decent sample data set to work with.

“What should we do about data storage? Should I go ahead and provision a—”

Samara abruptly cuts you off in the interest of keeping things simple.

“No need for that yet. Let’s hardcode a sample data set as a bunch of arrays, and walk
over those to generate the recommendations.”

“You know that won’t last us that long, right?”

“Doesn’t matter. It doesn’t have to!”

Samara is on a roll, so you ask her to do the coding while you piece together a hand‐
ful of song names, artists, and video identifiers.

Limit the scope of your work as much as possible | 11

3 Image sources: Piano; Regina #1; Regina #2; Regina #3

Fifteen minutes later, the two of you have something that looks halfway decent3 run‐
ning live in production:

Just to show signs of progress and to hint at things to come, you drop one last note to
Ross before wrapping up for the day:

You: Hey Ross, if you check out the website you’ll see that we now have something up
and running that kind of looks like a music recommendation system. It’s very limited
at the moment (only does artist matching), but thought it’d be fun to show you what
we’ve been able to put together so far.
Ross: Whoa! Nice work. It definitely feels good to be able to interact with this rather
than just looking at placeholder images, and it seems to be working mostly how I
imagined it would in my mind.
I assume you’ll be adding some more interesting recommendation behavior tomor‐
row? It doesn’t need to be fancy, but it’d be nice to go beyond just artist matching.

12 | Chapter 1: Using Prototypes to Explore Project Ideas

http://pbpbook.com/piano
http://pbpbook.com/reg1
http://pbpbook.com/reg2
http://pbpbook.com/reg3

4 A walking skeleton is a small end-to-end implementation of a feature that gives you a starting point for think‐
ing through and evolving the rest of the system it will eventually become a part of.

You: Absolutely. We’re still giving that some thought, but we will be in touch tomorrow
with more to show you.
Ross: Great. Thanks again for working on this. I’m super pleased to see an early ver‐
sion of this idea take shape in the span of a single workday.

The basic walking skeleton4 that you and Samara have put together will increasingly
become more interesting to work with in future iterations.

While most of the first day of work consisted of getting the various moving parts into
position, it has put you in a good place to begin exploring the real problem you are
trying to solve. Had you attempted to jump straight into thinking about how to solve
the full problem, it would have been harder to find a starting point, meaning much
more stumbling along the way.

With not much time left on the clock for the day, you decide to spend the afternoon
taking care of minor chores, reading blog posts, and using your phone to chase imag‐
inary animals in exchange for imaginary Internet points.

Remember that prototypes are not production systems
After half an hour of quiet procrastination, Samara breaks the silence with some
exciting news:

“Oh hey, customer support at FancyVideoService got back to us.”

“They did? I didn’t even know that you had emailed them. When did you do that?”

“While you were talking to Ross. I figured it’d be better to hear back about this sooner
rather than later, but I’m surprised we got such a quick response.”

You look over her shoulder to see what they had to say:
Hi Samara,
Hotlinking to the thumbnails for the videos we host is technically not against our poli‐
cies, because we do want to be able to support a wide range of different use cases
around sharing the videos we host.
That said, it’s not officially supported either, and there is no guarantee that the URL
scheme will not change. We also reserve the right to deny access to anyone who seems
to be abusing the service, at our sole discretion.
A better solution would be to register for our developer network and then use the data
APIs we provide. By looking up thumbnail URLs this way, your code will continue to
work even if we make changes to the URL structure in future updates.

Remember that prototypes are not production systems | 13

http://pbpbook.com/skel

Another benefit of registering for the developer network is that if there is ever a situa‐
tion in which your code unintentionally violates our service terms, we’ll be able to
identify you and send you proper notice about how to resolve the issues.
Hope that helps, and have a “Fancy” day!
-Sarah

You’re relieved to find out that this feature is supported, even if the exact approach
you took isn’t what FancyVideoService prefers.

In the interest of saving time, you decide to stick with the unofficially supported way
of generating thumbnail links for now, but you make a note about the issue so that
whoever ends up building the production version of this software will know about it.

Happy with your progress, you call it quits for the day.

Design features that make collecting feedback easy
The next morning, you arrive at the office to see the whiteboards filled with a ton of
notes that weren’t there the night before. Curious about what Samara has been up to,
you start to look them over.

“Oh wow! Ross will love this. What time did you get in this morning?”

“About an hour ago. I had this idea while eating breakfast, and decided to come in
and start playing around with it.”

Samara looks like she didn’t get enough sleep, but you’re so happy with her idea that
you feel no need to mention that.

“So, should we get started on this then? I think it looks promising, and your notes are
really, really good.”

“Already done. Check the website.”

You sit down and spend a couple minutes playing around with the new features. They
are all working well, especially for a first major deliverable.

“How did you build this so quickly? I assume you cut some corners as we always do,
but I doubt I’d be able to get that much done in an hour.”

“Oh, you really do not want to see the code for this. You see all those recommenda‐
tion scores? They’re all being stored in a single browser cookie.”

Figuring out the right balance of when to play fast and loose and when to tighten
things up takes practice, but you trust Samara’s judgment. You ping Ross to collect his
feedback on the new functionality:

14 | Chapter 1: Using Prototypes to Explore Project Ideas

5 Image sources: Ella Fitzgerald; Beck; Thelonious Monk; Regina Spektor

You: Hi Ross. I’m happy to say that we have something ready to show you whenever
you’re able to check it out. Just visit the website whenever you get a chance, and then I
can walk you through what is going on there.
Ross: I’ll take a look soon, thanks. I wasn’t expecting to hear from you until at least
lunchtime, so this is a pleasant surprise.
You: Here’s a screenshot5 that shows what things look like after viewing a bunch of vid‐
eos. But definitely try it out yourself to get the full effect. :-)

Ross: Just spent a few minutes playing with the new feature. This is awesome!
One thing I noticed is the “interests” sidebar, which we never really talked about yes‐
terday. Can you explain to me what that’s meant to be used for?
You: Sure. It’s worth mentioning up front that this sidebar isn’t meant to be a perma‐
nent part of the application’s interface.
Because the recommendation behavior is a little harder to explain than it is to see in
action, we made this sidebar so that you can see how your tag scores are added up as
you select videos in the application. Each tag is clickable, and whenever you click on a
tag you will be sent to a randomly selected video in that category. You can use this to
influence the scores and change the recommendation behavior.
Ross: Can you give me an example of how to try this out?
You: Sure. Click “Thelonious Monk” a bunch of times, and see what happens.

Design features that make collecting feedback easy | 15

http://pbpbook.com/ella
http://pbpbook.com/beck
http://pbpbook.com/monk
http://pbpbook.com/reg2

Ross: Aha! As I did that, the recommendations for antifolk music started to become
less frequent, and jazz recommendations become more frequent. Eventually, the sys‐
tem was offering me nothing but videos from Monk, which I guess is what was sup‐
posed to happen.
You: Yep. Do you feel like you understand this now?
Ross: I think I understand it well enough to want to play with it some more, and we
may even be far enough along where I can send this to a few other people today and
collect their feedback as well.
I am really glad you made that sidebar, though, because I would have had trouble
understanding how the recommendations system worked based on your description
alone. So thanks for that.
You: It was Samara’s idea, and it’s something we really should do more of. It helps you
see a little bit of what’s going on under the hood, and it gives you a chance to explore
the rules we’ve implemented.

* * *
Ross: One more question before I send this out for feedback: where is the sample data
coming from?
You: Right now, we’re using a very small set of hand-picked videos based off of things
we saw on your blog, but this is another area where we put in some effort to allow you
to customize it yourself.
The system is currently set up to read its data from a CSV file, which you can edit in
any spreadsheet software. Here, take a look at a few of the records that we currently
have in the system:

16 | Chapter 1: Using Prototypes to Explore Project Ideas

You: The first column is the unique identifier for the video, which appears at the end of
each FancyVideoService URL. The second column is the artist name, and the third col‐
umn is the name of the song. Every column after that is treated as an arbitrary tag.
Right now we have only two tags (genre and release year), but you can add as many of
these as you want.
Ross: Wait…am I understanding this correctly? If you sent me this spreadsheet and I
edited it to include any videos I wanted, you’d be able to directly import that and the
videos would start showing up in the system with the tags I set?
You: Yes, that’s the basic idea. We may need to be a little careful at first just because
these things do need to be correctly formatted, but this is something we can help you
with where needed.
What we had in mind here is that maybe you’d want to create a list of a couple hundred
songs from your blog, and then that would give you a more realistic test of the existing
recommendations behavior.
Once you’ve done that, we can definitely talk about ways to automate pulling your
entire collection of 4,000 songs from your blog, but we figured that could probably
wait until later.
Ross: This is great. I’m going to do exactly as you suggested, and put together a small
list of songs based on the blog posts. After that, I’m going to make sure that at least a
handful of people get to try this out today, and by the late afternoon I should be able to
share their feedback with you. From there, we can figure out what to focus on next.
I can’t thank you enough for putting this together. Really nice work.
You: This has been fun, and you’ve made our job very easy, so thank you, too.

Despite the feeling of mutual appreciation, it won’t necessarily be smooth sailing from
here. As the old saying goes, “the devil is in the details,” and the next several iterations
will get more detailed, probably stirring up at least one major unanticipated issue
before you complete the prototyping phase.

But that isn’t a sign of a flawed process; it’s exactly what you should expect as a side
effect of accelerated feedback loops. Prototypes can help you figure out how to build
useful things faster, but they also help you fail faster. If you can spot a dead-end path
before you’ve already spent a ton of time walking down it, it means you can spend
more energy on figuring out where the right path is.

For the moment, though, both you and Samara are content to celebrate your early
progress. A little bit of goodwill and trust built up in the early stages of a project can
help build the kind of momentum that gets you through the inevitable rough patches
that crop up in any creative work.

Design features that make collecting feedback easy | 17

Recommendations and reminders
• Ask questions that reveal the goals of the people involved in a project. In doing

so, you can both validate your assumptions and get more context on how other
people see the problem.

• Use wireframes (rough sketches) to clearly communicate the basic structure of an
application without getting bogged down in style details.

• Make sure to set up a live test system that everyone can interact with as soon as
you start coding. The initial setup for this system needn’t be production-ready; it
just needs to be suitable for collecting useful feedback.

• In the early stages of a project, focus on the risky or unknown parts of your work.
Prototyping is about exploring a problem space, not building a finished product.

Questions and exercises
Q1: The work on the music recommendations system in this chapter went fairly
smoothly. What is something that could have gone wrong (but didn’t) that would
have made things much harder for the developers?

Q2: Pick two examples from the chapter where the developers chose to cut corners in
order to work expediently. What tradeoffs were involved in those decisions? In other
words, what did the developers give up to gain a bit of speed?

Q3: Imagine that instead of a simple recommendations system, the client had wanted
a sophisticated implementation that made use of machine learning techniques. How
would that change the direction of the prototyping phase for the project?

E1: Draw a couple wireframe diagrams describing the basic functionality of a wiki.
Then repeat the process, but this time around sketch a different type of interface.
Imagine the differences in implementation details between the two alternatives.

E2: Take any software tool or website you’ve used recently and pretend that you’re
about to implement it from scratch. Spend up to an hour or so exploring what your
first steps might be.

18 | Chapter 1: Using Prototypes to Explore Project Ideas

6 You won’t need to write code to solve this problem, but an ASCII table will come in handy. Once you know
the rules that govern this little Turing tarpit, a solution can be found in a few seconds with pen and paper.

Hey, you finished the first chapter! Awesome work.

Please enjoy this unrelated puzzle6 as a token of my appreciation for your efforts.

Start at the beginning and end with a bang! Jump around if you must, but don’t get lost
in the noise. If you look carefully, you’ll surely hash out what the hidden message is.

Design features that make collecting feedback easy | 19

CHAPTER 2

Spotting Hidden Dependencies in
Incremental Changes

Imagine that you work for a product company that is known for
their massive knowledge base of high-quality documentation.

The business is fortunate enough to have very dedicated customers, many of whom
also write their own blog posts and articles to share helpful ideas on how to get the
most out of your company’s products.

To encourage the ongoing development of community-based learning materials,
you’ve been asked to build a public wiki that will be hosted alongside the official
knowledge base website.

You would prefer to implement this functionality as a standalone project, but for stra‐
tegic reasons that haven’t been fully explained, your product manager expects you to
integrate the new wiki features into the existing knowledge base. The wiki will live in
its own area, but it’ll share the same codebase and infrastructure.

The challenge will be to bring the wiki online without having any negative impact on
the existing website. On the surface this seems easy because no old code will need to
be modified to support the new features, but deeper issues lurk below the waterline.

In this chapter…

You will learn about the many issues that can crop up whenever a
production codebase is gradually extended to fit a new purpose.

21

There’s no such thing as a standalone feature
You spend a couple days building out a minimal wiki, and the features you build end
up looking quite similar to what exists within the knowledge base system. The only
major difference between the two tools is that the original system is only used by a
handful of trusted administrators, while this new wiki will be editable by anyone who
visits your company’s website.

To get some early feedback on your work, you show the wiki to Bill, your product
manager. Bill spends three minutes playing around with it, and then turns to you and
says, “This looks greaaaat. I’m gonna need you to get this shipped by Friday, OK?”

Rushing this new feature out the door seems like a terrible idea, but you try to make
the best you can of a bad situation. You settle down and start to think through what
could go wrong once this feature is live in production.

At first glance, it almost feels like there’s not so much to worry about. The wiki lives
in its own distinct section of the website, and you avoided modifying any of the code
from the original content management system while adding this new feature set. Even
if the wiki itself ends up crashing and burning, what is the worst that can happen to
the rest of the website?

After a few moments, you notice something worth being concerned about: allowing
anyone to create and edit pages without any restrictions is a huge risk from a storage
standpoint.

There are many possible attack vectors to be concerned about, ranging from building
huge documents to soak up storage capacity, to building tons of tiny documents, to
building documents as quickly as possible to overload the storage mechanism itself.

Because both the knowledge base and the wiki use the same storage mechanism, an
attack on the wiki could take the knowledge base down along with it. This is an
example of an infrastructure-level dependency that isn’t immediately obvious when
you’re looking at a newly introduced change to a codebase.

That idea leads you to notice another important point: the same web server hosts
both tools. The conversion of Markdown to HTML for the wiki articles is handled in-
process, and it’s not especially performant. Someone wishing to disrupt the service
wouldn’t even need to wait until storage ran out; processing would grind to a halt as
soon as the Markdown converter was overloaded with requests.

In light of these issues, you take a few steps to mitigate risks. They’re nothing fancy,
but they should help prevent a catastrophe:

• You limit the maximum number of pages to no more than 1,000 documents.
• You limit the size of each wiki page to no more than 500 kilobytes.

22 | Chapter 2: Spotting Hidden Dependencies in Incremental Changes

• You move the Markdown processing for the wiki into a work queue, and limit the
queue size to 20 pending jobs, raising a “Please try again” error when the queue is
overloaded.

• You add monitoring to track wiki page creation, deletion, and editing—and set
up alerts for when these events are happening more frequently than you’d expect
during ordinary operations.

• You add availability monitoring for the knowledge base website, pinging it twice
per minute to ensure it is still accessible and responding within an acceptable
amount of time. This should have been done long ago, but the clear need for
improved monitoring makes this a perfect opportunity to add it in.

These measures on their own are not enough to make things completely safe. How‐
ever, spending an hour to guard against the basic risks that come along with shared
infrastructure dependencies is time well spent.

Confident that these changes have made your code much less dangerous, you let Bill
know that the tool is ready to ship.

If two features share a screen, they depend on each other
A few weeks have gone by and the wiki has survived in production without any major
headaches.

You were given a new project to work on immediately after the initial version
shipped, and so it’s been some time since you’ve had to even think about the wiki. But
just this morning, you received an email from Sandi in marketing that will shift your
attention back to it for a little while:

Hello programmer friend,
I’m not sure if you’ve been looking at the analytics dashboard for the wiki lately, but
we’re definitely seeing some growth in activity.
One thing I noticed when looking at the analytics data is that although we have almost
80 pages in the wiki, most people tend to only visit the articles that are directly linked
from our most popular landing pages.
If it wouldn’t be too much trouble, I’d like for you to spend a bit of time working on a
new feature that will help customers explore the site.
What I’d like to see is a sidebar that lists the five most popular pages, the five newest
pages, the five most recently updated pages, and five randomly selected pages.
We’d like to promote this new feature in our monthly newsletter, which will be sent out
in the next couple days. So if you can sneak some time in to work on this before then,
that would be excellent.
-Sandi

If two features share a screen, they depend on each other | 23

1 Feature flipping is a technique for rolling out features to a restricted set of users, whether it’s an individual
developer, a group of testers, or some percentage of real visitors to a website. Many open source libraries have
been built to support this workflow, so finding one for your preferred programming language should be easy.

Adding this new sidebar is a reasonable request, and building it shouldn’t be all that
complicated. But as usual, it’s something that you’ve been asked to do in a hurry, and
that makes you nervous. Will all this rushed work come back to bite you later?

You could probably tell Sandi that you’d like a little more time to build out the fea‐
ture, and that wouldn’t create any massive problems for anyone. But before doing
that, you decide to do a quick spike and see how far you can get in a single sitting.

Adding the new sidebar won’t require modifying any existing behavior except for the
UI for viewing wiki pages. In theory, this seems to be a low-risk change. In practice,
you know there’s no such thing.

Looking over Sandi’s request, you realize that listing the five newest pages, the five
most recently updated pages, and five random pages will be easy, because all of this
information can easily be pulled with a simple database query. Determining the most
popular pages is a more complicated task, so you put it off for now and focus on the
low-hanging fruits.

You code up these simple queries and dump them into an ugly little sidebar on the
right side of the wiki page. It takes about 20 minutes to cobble together, but it looks
surprisingly functional. You wrap the whole thing in a feature flipper,1 and make it so
that the new sidebar will only be visible to developers. Two minutes later, the feature
is live in production and you’re ready to kick the tires.

The first time you visit the wiki, the sidebar looks like it’s working perfectly. It is filled
with a list of page links, along with a timestamp that indicates when each page was
last updated.

After refreshing the page a couple more times, you hit your first problem: the page
completely fails to load, and you get a generic “We’re sorry, but something went
wrong” page instead. This seemingly self-contained change managed to break the
whole wiki!

You check your email inbox and sure enough, there’s already an exception report
waiting to be reviewed. You quickly discover the source of the problem: a handful of
old records that had null values for their “last updated” timestamps, which were cre‐
ated before you started tracking update times.

This wasn’t an issue until a few minutes ago, because those timestamps hadn’t been
displayed anywhere in the UI yet. The fix for this issue is easy: use the console to set
any null timestamps to the date the wiki was rolled out, and then add a constraint to
prevent records from being created with null timestamp fields in the future.

24 | Chapter 2: Spotting Hidden Dependencies in Incremental Changes

The lesson to be learned from this failure is that changes to database schemas always
require some thought about data consistency. No matter how well isolated compo‐
nents are at the code level, there can still be hidden dependencies at the data layer.
This means that a schema update that’s meant to support a feature in one area of the
codebase may break other seemingly unrelated features down the line—which is
exactly what happened here.

You deploy a quick fix for the timestamp issue and then resume your therapeutic
clicking of the browser refresh button. After half a dozen clicks you end up hitting
another serious issue, but one that’s very easy to fix.

You initially designed the sidebar to have a flexible width, with the idea that it would
be allowed to expand a bit to accommodate longer page titles. But this is a half-baked
idea that doesn’t take into account the fact that one of the real wiki pages has the title
“How to do something really amazing with the WidgetProFlexinator that you never
thought was possible!”

By allowing the sidebar to expand to fit extremely long titles, the page contents them‐
selves are stuffed into a tiny column that’s completely unreadable. This is so silly that
it’s laughable, but it also serves as a useful reminder of another subtle dependency: if
two features are displayed on the same page, you have to take steps to make sure they
don’t interfere with each other.

You set a maximum column width on the sidebar and redeploy. You hit the reload
button until you’re fairly confident that you’ve seen every single page in the wiki show
up in the sidebar at least once. Things appear to be working fine.

You tweak the feature flipper configuration to enable the sidebar for Sandi’s account,
and you send her a quick email to let her know about your progress:

Hi Sandi,
I need to spend some time thinking about the “most popular” list, but we’ve rolled out
an experimental sidebar with everything else you asked for. It’s only visible to you and
the development team for now, but please try it out and let us know what you think.
-Your humble programmer friend

Within an hour after receiving Sandi’s email, you’ve not only delivered something
that she can give feedback on, but you also found and fixed a minor data consistency
bug. Feeling satisfied with your progress, you take a break and go out for a walk.

If two features share a screen, they depend on each other | 25

Avoid non-essential real-time data synchronization
When you return to the office, a response from Sandi is already waiting for you:

Hi there!
Functionally, the sidebar looks very close to what we need. Two quick notes, though:

1. The “most popular” list is pretty important, because right now people mostly land
on the wiki through organic search or via links to specific pages that get shared on
social media. Even though these pages get a lot of visits individually, there cur‐
rently isn’t anything linking them together and we’d like to fix that.

2. Can you pick any color scheme for the sidebar other than “light brown text on an
electric green background?” My own preference would be to match the look and
feel of the sidebars from the knowledge base pages, but anything that doesn’t burn
the eyes would be an improvement. :-P

Any chance you can take care of these issues and ship by Thursday?
-Sandi

You often make work-in-progress features a bit rough on purpose to prevent others
from thinking they’re ready to ship, but she has a point—electric green is a step too
far. Before moving on, you take a few minutes to roll out an updated version of the
code that replaces the intentionally hideous color scheme with something that looks
similar to the knowledge base styling, as Sandi suggested.

You start to think through the popularity ranking feature. To implement it, you’ll
need to pull down data from the site’s analytics service. This could be done in real
time through a search for the top 5 most visited pages in a specific time period, but
this would result in an API call every time a wiki page loaded, which seems pretty
wasteful. Even worse, this approach would unnecessarily introduce a hard depend‐
ency on an external service.

Your past experience has taught you that external service integrations are often full of
headaches, because they can fail in all sorts of weird and unpleasant ways. You have to
assume with every service integration that it may be slow to respond, it may reject
requests due to rate limiting issues, it may have periods of downtime, it may return
empty responses or incorrectly formatted responses, or it may trigger timeout errors
—and if none of those things end up happening, it may still find some other way to
ruin your day sooner or later.

If there was a genuine need to work with real-time data, you’d have no choice but to
invest time and energy into writing robust, fault-tolerant code. But in this case, the
popularity ranking would still be reasonably accurate if you simply updated the page
visitor counts a few times per day. For that reason, writing a minimal script that will
be run as a scheduled job is probably the right approach here.

26 | Chapter 2: Spotting Hidden Dependencies in Incremental Changes

You write a script that connects to the analytics API, looks up the stats for each page,
and then imports the total visitor count for each page into the application’s database.
This script will be run by cron every four hours, and if any sort of error occurs or if it
fails to complete its task within a reasonable time frame, you’ll be notified. But for the
most part, there’s no real consequence to intermittent failures because this code will
be running outside of the main application. The worst that can happen upon failure is
that the popularity rankings become slightly out of date.

By taking this approach, you’ve reduced the scope of the problem in the application
itself to another simple database query, making it no more complicated to implement
than the “new pages” and “recently updated pages” features. You’ve also sidestepped
the need to add further configuration information or libraries to the main web appli‐
cation, because your script runs in a separate standalone process and only shares
information via the database layer.

Putting all these pieces together takes a couple hours, but by the end of the day you
have the functionally complete feature running in production. Sandi takes one more
look at it and lets you know that it looks good to her, so you roll it out to a small
number of the wiki visitors and check to make sure that nothing bad happens.

After you’re reasonably convinced that the sidebar is working properly, you set aside
some time to clean up the code and put it through a proper review before it is offi‐
cially announced on Thursday. Once that work is done, you roll the change out to
everyone. By the start of the following week, Sandi is able to see some interesting
changes in the analytics data that indicate that the feature is actually doing what she
hoped it would.

Look for problems when code is reused in a new context
It has been three months since you last touched the wiki, and it has been working
great for the most part. But today, all of that will change in an instant.

You arrive in the office to find Bill nervously pacing back and forth while talking on
the phone. You can only hear one side of the conversation, but it’s obvious that there
is something seriously wrong.

“No, of course the wiki isn’t sponsored by an herbal supplement company! We’re not
running any sort of advertisements at all.”

“No, super-cheap-pills-for-you.com isn’t a domain the company owns.”

“No, we’re not trying to pull some sort of practical joke, nor are we trying to damage
the reputation of the company. I really can’t believe you’re even suggesting that.”

“When did you first get a complaint about this problem? Just this morning? OK,
that’s good news. We’ll stop the line and get working on a fix right away.”

Look for problems when code is reused in a new context | 27

Bill ends the call and sits down next to you. He starts trying to explain what is hap‐
pening, but you’re already one step ahead of him.

“I pulled up the wiki as soon as you mentioned herbal supplements,” you say. “It looks
like we’ve got a major issue here: we’re allowing <script> tags and who knows what
else in the Markdown files. I’m working on a patch now that will temporarily redirect
the entire wiki to a maintenance page, until we can assess the damages.”

As soon as the maintenance page is up, you begin working on a script to detect the
presence of HTML tags in the Markdown documents. This will help determine just
how many pages have been affected, and what to do about it.

The report reveals that of the 150 pages that currently exist in the wiki, 32 pages use
at least some inline HTML. But of those, only 12 of them are using the <script> tag.
This could have been a lot worse if the issue hadn’t been caught so quickly.

You generate a comprehensive list of links to match this report, breaking them into
three groups: “No HTML,” “HTML without script tags,” and “HTML with script tags.”
Bill clicks through the “No HTML” links while you work on the others.

Every single page with a <script> tag on it illustrates the same behavior. It shows a
modal window that says, “One moment while we redirect you to our sponsor’s web‐
site…,” and then it redirects the visitor to super-cheap-pills-for-you.com. This is
incredibly irritating, but at least it seems like this is a single incident of abuse rather
than a rampant problem.

For all of the documents that are using HTML tags other than <script>, there doesn’t
appear to be anything evil going on. Most uses of HTML appear to be from contribu‐
tors who don’t fully understand the Markdown format and instead stick to using the
basic HTML tags that they’re already familiar with. A handful of pages use HTML for
more elaborate purposes, like displaying tables or embedding videos from other web‐
sites. The embed codes remind you that <iframe> is another tag that could poten‐
tially be used for abuse, but at least so far that hasn’t happened.

Bill finishes auditing the Markdown-only documents and doesn’t find any obvious
signs of abuse. At this point, the wiki has been rejecting all incoming traffic for about
half an hour, but you now have a much better understanding of the problem.

You start working on restoring partial functionality to the wiki to minimize negative
customer impact. You first strip the <script> tags from the dozen documents that
were infected with them, and then you deploy some code that allows read-only access
to the wiki pages. Bill calls the customer support team to notify them about your pro‐
gress, and for the moment it seems that tensions have eased as a result.

With the immediate crisis averted, you can now start dealing with the underlying
cause of the problem: a Markdown processor that might have worked fine for a hand‐
ful of trusted administrators, but isn’t safe for use by random bots on the Internet.

28 | Chapter 2: Spotting Hidden Dependencies in Incremental Changes

At its root, this is another hidden dependency issue. You reused a tool that was rea‐
sonably configured for one purpose, without considering how that configuration
might be harmful when applied in a slightly different context. In doing so, you
focused on the superficial similarities of the two use cases rather than their funda‐
mental differences, and that clouded your judgment. This is an example of bad code
sharing practices, and it is something to learn from.

Going a bit deeper, the more subtle issue is that by not explicitly disallowing or
restricting HTML tags from the start, you implicitly allowed for their use. This unde‐
fined behavior led contributors to believe this was an officially supported feature,
even though it’s clearly a defect from your perspective.

There is no question that the underlying security risks must be dealt with; it is essen‐
tial to prevent anonymous visitors from injecting arbitrary JavaScript code into wiki
pages. However, you also need to minimize the damaging effects of your repair.

After thinking about the issue, you decide that stripping all HTML tags is not the way
to go. Although they represent a small percentage of the total number of pages in the
wiki, some of the most popular articles make use of HTML in interesting ways that
would be permanently broken by such a coarse-grained change.

You look into HTML sanitizing libraries and eventually find something that’s fit for
this purpose: it strips away any <script> tags, restricts <iframe> tags to a whitelist of
specific trusted domains, and takes care of other edge cases that might cause issues.

To assess the impact of this change on the existing documents, you compare the raw
HTML output from the Markdown processor to the sanitized output for each page.
Most of the documents are unmodified by the sanitization process, leaving only five
pages that need to be manually edited before the new rules can be applied.

To make sure that this particular issue never happens again without being noticed,
you spend the rest of the afternoon writing tests for all the nefarious examples you
can think of. This gives you some amount of satisfaction, but you worry that this
won’t be the last case of abuse you’ll ever need to deal with on this wiki project. And
that lingering thought keeps you on edge, even as you close up shop for the day.

Look for problems when code is reused in a new context | 29

2 See “CWE/SANS TOP 25 Most Dangerous Programming Errors” for some extra context.

Recommendations and reminders
• Don’t assume that a change is backward-compatible or safe just because it doesn’t

explicitly modify existing features. Instead, be on the lookout for hidden depen‐
dencies in even the most simple updates.

• Pay attention to the many shared resources that live outside your own codebase:
storage mechanisms, processing capacity, databases, external services, libraries,
user interfaces, etc. These tools form a “hidden dependency web” that can propa‐
gate side effects and failures between seemingly unrelated application features.

• Make use of constraints and validations to help prevent local failures from caus‐
ing global side effects where you can. But also make sure to have good monitor‐
ing in place so that unexpected system failures are quickly noticed and dealt with.

• Watch out for context switches when reusing existing tools and resources. Any
changes in scale, performance expectations, or privacy levels can lead to danger‐
ous problems if they aren’t carefully thought out.

Questions and exercises
Q1: What about hidden dependencies (e.g., shared resources, services, and infrastruc‐
ture) makes them harder to spot than the explicit dependency relationships between
modules/functions in a codebase? What can you do to make them more visible?

Q2: Many of the examples in this chapter involved simple security flaws. Try to think
of at least one other potential way a real wiki might be exploited2 in the wild. Does
your imaginary attack involve a hidden dependency in some way?

E1: Look through 10–15 resolved bugs in your own projects, and identify any that
were at least caused in part by problems with hidden dependencies. Create a checklist
to help catch similar issues in future code reviews.

E2: Choose one codebase that you’re familiar with and list out a handful of the differ‐
ent features it supports. Then sketch out a hidden dependency web that shows the
shared resources between each of the features.

30 | Chapter 2: Spotting Hidden Dependencies in Incremental Changes

http://pbpbook.com/sans

CHAPTER 3

Identifying the Pain Points of
Service Integrations

Imagine that you run an educational journal for programmers that
has paying customers but is too small to support full-time work.

Together with your friend Huan, you maintain a custom web application that sup‐
ports the journal and its subscribers. Built on a tight budget, the project mostly con‐
sists of glue code around common open source tools combined with a handful of web
service integrations.

Over the years, you’ve started to learn that there are considerable costs and risks
involved in using code that isn’t under your own control. You’ve been bitten several
times by action at a distance that wasn’t accounted for when designing your software,
and consequently you’re now more cautious when integrating with external services.

As part of an annual retrospective, you will meet with Huan today to look back on a
few of the biggest pain points you’ve had with third-party software integrations.

You’ve made a promise to each other not to turn this discussion into a game of “Who
is to blame?”, a perspective that can easily generate more heat than light. Instead, you
will focus on guarding against similar problems in future work, and if possible, pre‐
venting them from occurring in the first place.

In this chapter…

You will learn some of the various ways that third-party systems
can cause failures, as well as how flawed thinking about service
integrations can lead to bad decision making.

31

Plan for trouble when your needs are off the beaten path
“How about we start by talking through the bracket stripping issue?” Huan asks with
some hesitation. Immediately, your face turns red.

This issue is truly embarrassing, but it did teach you some important lessons the hard
way. Now is as good a time as any to reflect upon it.

What exactly was the bracket stripping issue? It was a mistaken assumption that
plain-text emails sent via a third-party newsletter service would be delivered without
any modifications to their contents whatsoever.

A handful of test emails and a cursory review of the service’s documentation didn’t
raise any red flags. But upon testing the second email you planned to send out, you
noticed that all occurrences of the [] character sequence were silently deleted from
the message.

This is a subtle problem, one that would have minimal impact (if any) on emails that
didn’t contain special characters. But because the emails you were delivering had code
samples in them, any sort of text transformations were problematic. The fact that the
[] character sequence appeared often in code samples made things much worse.

You contacted customer support to find out if they could fix the problem. Their
response, summed up: “Yes, this problem exists, and we can’t fix it easily because this
strange behavior is fundamentally baked into our email delivery infrastructure.”

One suggested workaround was inserting a space between the opening and closing
brackets, which worked for some use cases, but not all. There were some situations
where you really did need to have the exact [] character sequence; otherwise, code
samples would fail with hard-to-spot syntax errors whenever someone attempted to
copy and run them.

As a result, the newsletter service could not be used for sending full-text emails, so
you changed up the plan and decided to host the articles on the Web. This is when
Huan joined the project (there was no way you could build out the web application
you needed and write articles for the journal at the same time).

Looking back, this kind of rushed decision making could have been prevented.

Had the flaw in the newsletter service been discovered before it was rolled out to pay‐
ing customers, you wouldn’t have been in such a hurry to find a workaround.

As you try to think through what you could have done differently, you struggle to
come up with anything. You let Huan know you’re drawing a blank, and ask her what
she thinks could have been done better.

She suggests it might have been a good idea to do an email delivery smoke test: “Take
a big corpus of sample articles and run them through the service to make sure they

32 | Chapter 3: Identifying the Pain Points of Service Integrations

rendered as expected. This would have likely caught the bracket stripping issue, and
wouldn’t have cost much to build.”

Her suggestion is a good one, but something about it makes you uneasy. You ask
yourself why you didn’t think to do something along those lines in the first place.
That gets the gears turning in your head, and you start to see the flawed thought pro‐
cess that got you stuck in this mess to begin with:

You: A smoke test would definitely have helped, but it never occurred to me that it was
necessary. And that was the real problem.
In theory, we should be approaching every third-party system with distrust until it is
proven to be reliable. In practice, time and money constraints often cause us to drive
faster than our headlights can see.
Huan: So you’re saying that you ran into problems because you rushed into using a
particular solution without carefully evaluating it?
You: Well, it’s pretty clear that I was looking for a shortcut. So I chose a newsletter ser‐
vice based on its reputation. This sounds like a reasonable way of evaluating options
quickly, but it isn’t.
Huan: But if the service was so popular, doesn’t that count for something? I feel like I
could have just as easily made the same assumption.
You: Do you know that great burger shop down the street from here? The one every‐
one is always raving about as if it’s the best place ever?
Huan: SuperFunBurger! I love SuperFunBurger. Where are you going with this?
You: What do you think about their fish sandwiches?
Huan: Dunno. Never had them. Didn’t even know they were on the menu, to be hon‐
est. Everyone always goes there for the burgers.

Because Huan is used to your way of talking in cheesy riddles, she has no trouble
deciphering your main point: in the case of this particular newsletter service, you
ordered a fish sandwich, not a burger.

With this issue laid out plainly on the table, you spend a few minutes talking through
what could have been done differently:

• You could have searched around more to see if others were using the service in
the way you planned to use it. It probably would have been hard to find similar
examples to your own use case, and that alone would have triggered some warn‐
ing bells that would have caused you to slow down a bit.

• It wasn’t safe to treat this uncommon use case as if it would have just worked.
Instead, it would have been better to treat it with the same level of uncertainty as
any other source of unknowns. Noticing the risks would have caused you to write
more comprehensive tests, and might have led you to consider running a private
beta for at least a few weeks before allowing open signups.

Plan for trouble when your needs are off the beaten path | 33

1 The Five Whys technique is used to explore root causes for problems by repeatedly asking Why to reveal the
broader context of an issue. Because most issues don’t have a single root cause, the exercise can be repeated as
many times as needed to explore different angles.

• The other critical question that was never asked was “what do we do if this ser‐
vice doesn’t work as expected?”—a question that should probably be asked about
any important dependency in a software system. Even if you treated it as a pure
thought experiment rather than as a way of developing a solid backup plan, ask‐
ing that question would have left you less surprised when things did fail, and bet‐
ter prepared to respond to the problem.

Remember that external services might change or die
For your next case study, you talk about the time the site’s login system suddenly
stopped working, which caught both you and Huan by surprise.

In a weird way, this story relates to the email newsletter issue that you just worked
through. The original plan was to deliver articles directly into a subscriber’s inbox so
that they could begin reading right away without any extra steps required. Changing
this plan complicated things a bit.

Because the problems with the newsletter service caused you to move the articles into
a web application—and because you were publishing materials that were meant to be
shared with members only—you needed to implement an authentication scheme.

Forcing subscribers to remember a username and password would have been a bad
experience, so you opted to use an authentication provider that most subscribers
already used daily. This made it possible to share members-only links without sub‐
scribers having to remember yet another set of login credentials.

Setting up this feature was painless, and after initial development, you never needed
to think about it at all. That is, until the day you tried to send out the 35th issue of
your publication and received dozens of email alerts from the application’s exception
reporting system.

You were able to get a quick fix out within an hour of seeing the first failure, but your
immediate response was predictably incomplete. You then implemented a more com‐
prehensive fix, but that patch introduced a subtle error, which you only found out
about a few days later.

The technical reasons for this failure aren’t especially interesting, but you suspect that
identifying the weak spots that allowed the problem to happen in the first place will
generate some useful insights. To uncover some answers about that, you suggest play‐
ing a game of Five Whys.1

34 | Chapter 3: Identifying the Pain Points of Service Integrations

http://pbpbook.com/5whys

Huan agrees to play the role of investigator and begins her line of questioning:

Why did the authentication system suddenly fail?

The application depended on a library that used an old version of the authentication
provider’s API, which was eventually discontinued. As soon as the provider turned
off that API, the login feature was completely broken.

Why were you using an outdated client library?

Authentication was one of the first features implemented in the web application and
it worked without any complications. From there forward, that code was totally invis‐
ible in day-to-day development work.

No one ever considered the possibility that the underlying API would be discontin‐
ued, let alone without getting some sort of explicit notification in advance.

Why did you assume the API would never be discontinued?

The client library worked fine at the time it was integrated, and no one raised con‐
cerns about the implementation details or the policies of the service it wrapped.

When this feature was developed, no careful thought was given to the differences
between integrating with a third-party library and a third-party web service.

An outdated third-party library will continue to work forever—as long as incompati‐
ble changes aren’t introduced into a codebase and its supporting infrastructure.
Because of the limited budget, the maintenance policy for the project was to only
update libraries when it was absolutely necessary to do so (for things like security
patches and other major problems).

A web service is an entirely different sort of dependency. Because a service depend‐
ency necessarily involves interaction with a remote system that isn’t under your con‐
trol, it can potentially change or be discontinued at any time. This wasn’t considered
in the project’s maintenance plan.

To the extent this issue was given any thought at all, it was assumed that due to the
popularity of the service providing the authentication API, users would be notified if
the provider ever decided to make a breaking change or discontinue their APIs.

Why did you assume the API provider would notify its users?

In retrospect, it’s obvious that every company sets its own policies, and unless an
explanation of how service changes will be communicated is clearly documented, it
isn’t safe to assume you’ll be emailed about breaking changes.

That said, there was another complication that obfuscated things. The client library
used in the application wasn’t maintained by the authentication service provider
themselves, but instead was built by a third party. It was already an API version

Remember that external services might change or die | 35

behind at the time it was integrated, and from the service provider’s perspective, the
tool was a legacy client.

The company that provided the authentication service also had an awkward way of
announcing changes, which consisted of a handful of blog posts mixed in with hun‐
dreds of others on unrelated topics, and a Twitter account that was only created long
after several of their APIs were deprecated. If we had researched how to get notified
up front, we would have been better prepared to handle service changes before they
could negatively impact our customers.

Why didn’t you research how to get notified about service changes as soon as you
built the authentication feature?

This feature was built immediately after the problematic integration with the email
newsletter service, and it was thrown together in a hurry as an alternative way to get
articles out to subscribers without delays in the publication schedule.

There were hundreds of decisions to make, and none of the work being done under
that pressure was carefully considered. In a more relaxed setting, it would have been
easy to learn a lesson from the newsletter service problems: third-party systems are
not inherently trustworthy, even if they’re popular.

But in that moment, there was still some degree of confidence that third-party serv‐
ices would work without problems, now and forever. And the only real explanation
for that line of thinking is a lack of practical experience with service-related failures.

After completing her investigation, Huan concludes that it would be a good idea to audit
all of your active projects to see what services they depend upon, and figure out how to
be notified about changes for each of them. The two of you agree to set aside some time
to work on that soon and continue on with your discussion.

Look for outdated mocks in tests when services change
Although the formal “Five Whys” exercise dug up some interesting points, it didn’t
tell the complete story of what went wrong and why. After continued discussion
around the topic, you realize that—once again—flawed testing strategies were parti‐
ally to blame for your problems.

It was easy to spot both the immediate cause of the authentication failure and the sol‐
ution, because you were just one of many people who had been relying on the depre‐
cated APIs. A web search revealed that an upgrade to your API client was needed—a
seemingly straightforward fix.

Knowing it wouldn’t be safe to update an important library without some test cover‐
age, you spot-checked the application’s acceptance test suite and saw that it had
decent coverage around authentication—both for success and failure cases.

36 | Chapter 3: Identifying the Pain Points of Service Integrations

Feeling encouraged by the presence of those tests, and seeing that the suite was still
passing after the library was updated—you assumed that you had gotten lucky and
that no code changes were needed when upgrading the client library. Manually test‐
ing first in development and then in production gave you even more confidence that
things were running smoothly.

A couple days later, an exception report related to the authentication service proved
you wrong. It was clear the tests had missed something important. Or at least, that’s
the imaginary version of the story you somehow managed to remember in detail
many months after it happened.

* * *

You dig through the project’s commit logs to confirm your story, and sure enough,
find an update to the mock objects in response to the final round of failures. You
mention this to Huan, who doesn’t appear surprised.

“That’s absolutely right,” she says. “We should have had some sort of live test against
the real API. Because we didn’t, our tests were never doing as much for us as we
thought they were. And if we had a live test that ran before each announcement
email, we might have caught this issue before it impacted our customers.”

Your gut reaction tells you that Huan is probably right, but hindsight is 20/20 and
testing isn’t cheap.

That said, it would have paid to dig deeper when you spot-checked the test coverage.
The mock objects were wired up at a low level, so the acceptance tests looked identi‐
cal with or without mocks. Because of this, it was easy to forget they were even there.

After upgrading the library and seeing no test failures, and then checking that things
were working as expected via manual testing, you assumed that you’d be in the clear.
The automated tests would catch any unexpected changes in the client library’s inter‐
face, and the manual test would verify that the service itself was working.

For the common use case of subscriber logins, this approach toward testing worked
fine, meaning the first fix you rolled out after upgrading the client library did solve
the problem for existing customers. It took a few more days to notice that the fix was
incomplete; when a new customer tried to sign up, the authentication system kicked
up an error.

This was a subtle problem. To complete authentication for an existing subscriber, all
that was needed was the unique identifier that corresponded to user records in the
database. When creating new accounts, however, you also needed to access an email
address provided in the service’s response data.

Upon the upgrade, the data schema had changed, but only for the detailed metadata
about the user; the identifier was still in the same place with the same name. For this

Look for outdated mocks in tests when services change | 37

reason, active subscribers were able to sign in just fine, but new signups were broken
until the code was updated to use the new data schema.

Turning this over a few times in your head, you can’t help but acknowledge Huan’s
point about the importance of live testing:

You: You’re absolutely right; testing the real authentication service would have helped.
But I also wish that I had been more careful when auditing our test coverage.
Huan: What would you have done differently?
You: I wouldn’t just look at the tests; I’d also check the code supporting them.
This would have led me to the configuration file where we mocked out the response
data from the authentication service. And if I saw that file, I would have probably won‐
dered whether or not it needed to be modified when we upgraded.
Huan: Sure, that’s a good idea, too. In the future, let’s try to both catch these issues in
code review by looking for outdated mocks whenever a service dependency changes,
and also having at least minimal automated tests running against the services them‐
selves on a regular schedule.
You: Sounds like a plan!

Expect maintenance headaches from poorly coded robots
For the final discussion topic of the day, Huan suggests discussing something that ini‐
tially appears to be a bit of a tangent: a situation where a web crawler was triggering
hundreds of email alerts within the span of a few minutes.

As you think about the problem, you begin to see why she suggested it: on the open
Internet, you don’t need to just worry about your own integrations, it’s also essential
to pay attention to the uninvited guests who integrate with you.

You do a quick archaeological dig through old emails, tickets, and commits to recon‐
struct a rough sequence of events related to the problem:

• An initial flood of exception reports hit your inbox at 3:41 AM on a Wednesday.
You happened to be awake, and immediately blacklisted the IP address of the
crawler as a first step. Once things seemed to have settled down, you sent Huan
an email asking her to investigate, and headed off to bed.

• When you woke up the next morning, Huan had already discovered the source of
the problem and applied a two-line patch that appeared to resolve the issue. An
incorrectly implemented query method was causing exceptions to be raised
rather than allowing the server to respond gracefully with a 404 status code. This
code path would be impossible to reach through ordinary use of the application;
it was the result of a very strange request being made by the poorly coded web
crawler that was hammering the server.

38 | Chapter 3: Identifying the Pain Points of Service Integrations

• At 4:16 AM on Friday, you saw a similar flood of exception reports. The specific
error and IP address had changed, but the strange requests were an exact match
to what you had seen on Wednesday. Although the crawler made hundreds of
requests within the span of two minutes, it stopped after that. This is cold com‐
fort, but it could have been worse.

• Toward the middle of the day on Friday, you pinged Huan for a status update but
never heard back. By then, you had noticed that the problem most likely had
come from a minor refactoring she had done after solving the original problem
(which you hadn’t even reviewed before the second email flood happened).

• At 6:24 AM on Sunday, the bot crawled the site for a third time, triggering the
same flood of exceptions that you saw on Friday. At this point, you looked into
the issue yourself and made a small fix. You also added a regression test that was
directly based on kinds of requests the crawler was making, to ensure that the
behavior wouldn’t accidentally break in the future.

• On Monday, you traded some emails that clarified what went wrong, why it hap‐
pened, and also what issues lurked deep beneath the surface that made this prob‐
lem far more dangerous than it may have first appeared.

Reminiscing about this chain of events is uncomfortable. Seeing a problem happen
not once, not twice, but three times is embarrassing, to say the least. It stings a bit to
look back on these issues even though many months have passed.

You: I’m sorry for how I handled this one.
These emails make it sound like you messed up, but it’s clear that my failure to com‐
municate was mostly to blame.
Huan: Maybe that was part of it, but I could have been a bit more careful here, too.
I never thought about how the risks to the email delivery service tied into all of this, I
just thought you were annoyed to keep getting spammed with alerts.

Your initial response was focused on the surface-level issue: your inbox was getting
bombarded with lots of unhelpful email alerts, and that was a nuisance. These errors
weren’t even real failures that needed attention; they were the result of a bot doing
things that no human would ever think to do.

Taking a higher-level view of the problem, what you had was an exposed endpoint in
the application that could trigger the delivery of an unlimited amount of emails. To
make matters worse, the email service you were using had a limited amount of send
credits available per month, and each of these alert blasts was eating up those credits.

Upon closer investigation, you also noticed that the exception reporting mechanism
was using the same email delivery service as the customer notification system. This
was a bad design choice, which meant the potential for user impact as a result of this
issue was significant.

Expect maintenance headaches from poorly coded robots | 39

Left untouched for a couple weeks, your monthly send credits probably would have
been exhausted by these email floods. However, it’s likely that you wouldn’t have had
to wait that long, because the system was delivering emails just as fast as the bot could
make its requests. It is entirely possible that the service provider could have throttled
or rejected requests as a result of repeatedly exceeding their rate limits.

This is yet another problem that could be chalked up in part to inexperience: the two
of you had seen crawlers do some weird stuff, but neither of you had ever seen them
negatively impact service before.

What your email history shows is that at some point you became aware of the poten‐
tial problems but didn’t explicitly communicate them to Huan. That wasn’t obvious at
the time; it only became clear after doing this retrospective today. This serves as a
painful but helpful reminder that clear communication is what makes or breaks
response efforts in emergency situations.

Remember that there are no purely internal concerns
You spend a few moments reviewing the retrospective notes from the email you
wrote many months ago. It includes many useful thoughts that you and Huan have
internalized by now:

• It’s important to add regression tests for all discovered defects, no matter how
small they seem.

• It’s important to check for mock objects in test configurations so that you won’t
be lulled into a false sense of safety when a test suite passes even though the
mocked-out API client is no longer working correctly.

• There are risks involved in sharing an email delivery mechanism between an
exception reporting system and a customer notification system.

• It’s worth looking into using a better exception reporter that rolls up similar fail‐
ures rather than sending out an alert for each one.

These are all good ideas. It’s a sign of progress that these bits of advice now seem
obvious and have been put in place in most of your recent projects. But why weren’t
those issues considered in the first place? Why did it take a painful failure to draw
attention to them?

40 | Chapter 3: Identifying the Pain Points of Service Integrations

You: I think that one common thread behind all of this stuff is that we had a well-
intentioned but misguided maintenance process.
Huan: How so?
You: Well, I think the spirit of what we were trying to do was reasonable. We had
agreed to treat customer-facing issues as a very high priority no matter how minor
they were, and then freed up capacity to do that by underinvesting in some of the
internal quality and stability issues.
Huan: So what’s wrong with that? Isn’t that what we still do? I thought this is one of
those things you like to write about as if it were a good thing.

You pause for a moment. Then you finally find a way to put into words something
that has been banging around in your head throughout this entire retrospective:

“Maybe there’s no such thing as a purely internal concern. Maybe as long as our code
talks to and interacts with the outside world, there will always be potential for customer
impact when things aren’t working as expected. If we pay more attention to what is hap‐
pening at the boundaries of our system, and treat any issue that happens there as one
worthy of careful attention, we’d probably get a better result.”

The room falls silent for the first time in an hour. You let the dust settle for a few
moments; then you and Huan head over to SuperFunBurger to try some of their
wonderful fish sandwiches.

Remember that there are no purely internal concerns | 41

Recommendations and reminders
• Be cautious when depending on an external service for something other than

what it is well known for. If you can’t find many examples of others successfully
using a service to solve similar problems to the ones you have, it is a sign that it
may be at best unproven and at worst unsuitable for your needs.

• Remember the key difference between libraries and services: a library can only
cause breaking changes if your codebase or supporting infrastructure is modi‐
fied, but an external service can break or change behavior at any point in time.

• Watch out for outdated mock objects in tests whenever a change is made to a ser‐
vice dependency. To guard against potentially misleading test results, make sure
that at least some of your tests run against the real services you depend upon.

• Use every code review as an opportunity for a mini-audit of service dependencies
—for example, to evaluate testing strategy, to think through how failures will be
handled, or to guard against misuse of resources.

Questions and exercises
Q1: The developers in this chapter struggle with bad behavior from a web crawling
bot. What other sorts of problems can arise from uninvited guests integrating with
your systems in ways you didn’t expect?

Q2: Suppose there is a service integration that is essential to the core operations of
your business: without it, everything grinds to a halt. How does this kind of depend‐
ency influence planning, testing, and maintenance strategies?

E1: Read through Richard Cooke’s essay “How Complex Systems Fail”. Identify at
least three of Cooke’s observations that are relevant to the story in this chapter. Then
try to find three others that describe issues you’ve encountered in your own work.

E2: Audit one of your production codebases to determine all of the external services
it depends upon. Then think through what might go wrong if any of those integra‐
tions fail. Finally, write down whatever notes you can on how to reduce risks and
make your software more resilient.

42 | Chapter 3: Identifying the Pain Points of Service Integrations

http://pbpbook.com/cooke

CHAPTER 4

Developing a Rigorous Approach
Toward Problem Solving

Imagine that you have spent the last few months mentoring a friend
who is in the early stages of a career in software development.

Your friend Emma started her first programming job about a year ago, and was
mostly self-taught before then. Determined to gain experience as quickly as she can,
Emma occasionally asks you for help whenever she hits a rough patch in her work.

In the last few weeks, Emma has noticed she seems to do well whenever she is work‐
ing on well-defined tasks, but struggles when working on problems that have lots of
fine-grained details that need to be sorted out before they can be solved.

Recognizing this stumbling block, Emma asks if it’d be worth trying out some pro‐
gramming puzzles as practice exercises.

You mull this idea over for a moment. Puzzles often needlessly complicate implemen‐
tation details, represent data in inconvenient ways, and can be difficult to validate
until all of their rules have been properly sorted out. This makes them awkward to
use for developing practical coding skills, but perfect for exploring general problem
solving techniques.

You find a puzzle you think Emma might like. She gets to work on it, while you stick
around to help her out with any questions she has along the way.

In this chapter…

You will learn several straightforward tactics for breaking down
and solving challenging problems in a methodical fashion.

43

1 Counting Cards by Eric Gjertsen. The chapter does not assume you’ve read this problem description, but if
you want a more immersive experience, go ahead and do that now.

Begin by gathering the facts and stating them plainly
Emma begins by reviewing the problem description for Counting Cards,1 the puzzle
the two of you will be working on today. She finishes reading it in five minutes, which
surprises you. You ask her to share her thoughts on it:

Emma: I get the basic idea behind this puzzle, but I’m not sure how to get started.
You: That’s OK. Try explaining what you know so far, and let’s see how far that gets us.
Emma: There’s a game transcript from some card game, and it lists out the different
actions each player takes on their turn. You’re supposed to track the flow of cards as
the game progresses, in order to figure out what’s in a particular player’s hand at the
end of each round.
You: Yep, that’s my understanding of the problem, too. What do you think the chal‐
lenging parts of solving it will be?
Emma: Well, you don’t have full information about what cards are in play. So I guess
you’d need to use some sort of process of elimination to figure out what is in every‐
body’s hands? This is where I start drawing a blank.
You: Now that I think of it, this problem is probably complicated enough where just
reading its description might not get us far. How about if we go back and take some
notes on some of its key details, and see what that turns up?
Emma: If you think that would help, sure. Let’s do it.

Sifting through the noise in order to find the signal is a necessary first step whenever
you’re working on a complicated problem. Rather then getting into a boring lecture
on that topic, you attempt to demonstrate this to Emma by example.

You read the puzzle description out loud while she jots down notes, and then you
swap roles and repeat the process. After you’ve finished reviewing and combining
your notes, the basic details of the card game begin to take shape:

• The game is played with a single standard deck of playing cards.
• There are four kinds of actions that can happen on a player’s turn: drawing a

card, passing a card to another player, receiving a card from another player, or
discarding a card.

• There is no apparent limit to the number of cards that can be drawn, passed,
received, and discarded in a single player’s turn.

• Once a card is discarded, it is out of play for the rest of the game.

44 | Chapter 4: Developing a Rigorous Approach Toward Problem Solving

http://pbpbook.com/cards

The game transcript lists out the various actions taken on each player’s turn, but the
amount of information provided varies for each player:

The expected output for the puzzle is a list of the cards in Lil’s hand at the end of each
round. In order to generate this list, it’ll be necessary to try out the various sequences
of moves provided for each of her turns, and then figure out which sequence is the
correct one. This is the process of elimination that Emma mentioned earlier; all that
remains is to figure out how to implement it.

Emma takes a few minutes to look over her notes and think about the problem. Then,
in a flash of insight, she finds a foothold that will be good enough to get started with:

Emma: Oh, I see! If we track what we know about where each card is supposed to be,
then we can eliminate sequences of moves that would lead to impossible outcomes…
like when someone draws a card that has already been discarded, or attempts to pass a
card that we know is actually in someone else’s hand.
You: Yep. It’s worth noting that for the full challenge, the process of elimination won’t
be quite so straightforward, but your basic idea is exactly right.
Emma: I think I need to study the problem a little more to understand where those
complications might come up. But I’ve looked over some of the practice data sets for
the puzzle and I think I understand them now. How about if we start with those and
see how far I can get with what I already know?
You: Sure! That sounds good.

Before this point, the problem description was just a sea of meaningless details and its
input files were made up of cryptic symbols that resisted interpretation. But now with
a sense of the end goal in mind and a glimpse of the path that might get her there,
Emma sees the problem in a whole new light.

Begin by gathering the facts and stating them plainly | 45

Work part of the problem by hand before writing code
You remain silent for a few moments while Emma reviews the first practice data set.
This one is mostly meant to introduce the syntax and basic structure of the game
transcript, so it only contains a single, valid sequence for each of Lil’s turns:

Shady +?? +?? +?? +??
Rocky +QH +KD +8S +9C
Danny +?? +?? +?? +??
Lil +8H +9H +JS +6H
Shady -QD:discard -2S:discard
Rocky -KD:Shady +7H
Danny -QC:Rocky +?? +??
Lil -6H:Rocky -??:Shady -8H:discard +?? -10S:discard +??
* -JS:Shady +10S +QS
Shady +KD:Rocky +??:Lil -KD:discard -??:Lil
Rocky +QC:Danny +6H:Lil -9C:Danny -6H:discard -7H:discard +3D +3H
Danny +9C:Rocky -AD:discard +??
Lil +??:Shady +?? -??:Danny -??:Shady +??
* +AH:Shady +8D -8D:Danny -QS:Shady +8C
Shady +??:Lil -7S:discard +?? -10H:discard
Rocky -QH:Lil +5D -8S:Shady -3H:discard -QC:discard
Danny +??:Lil +?? +?? -??:Lil -3S:Rocky -??:Shady
Lil +QH:Rocky +??:Danny -AH:Rocky -QH:discard
* +4D:Danny

Ten minutes later, Emma breaks her focus and signals that she needs some help:
Emma: I’m having trouble figuring out how to process this file.
You: Do you mean you don’t understand the actions themselves, or that you don’t
know how to write the code to parse the file?

Emma: The latter. For example, I know that things like +QH mean “draw a Queen of
Hearts” and that -??:Shady means “pass an (unknown) card to Shady”—but I’m not
really sure how best to model this data.
The format for the possible sequences on Lil’s turn are a bit confusing to me, too. I
know that the lines with the asterisks are meant to fill in the ?? parts of Lil’s turn, but
it’s not obvious to me how to write the code to merge them together.
You: To be honest, I’m not sure how to model this data yet, either. I usually work
through a problem manually for a bit before thinking about how to write the code; it
helps to see the moving parts before getting bogged down in implementation details.
Let’s do a step-by-step review of the game transcript, and see where that gets us.

Emma reads off the actions one by one, while you manually update a table that lists
the state of each player’s hand. After completing the initial draw and the first full
round of play, you end up with the following table:

46 | Chapter 4: Developing a Rigorous Approach Toward Problem Solving

After you take a closer look at the table, the underlying structure of the problem
becomes a bit easier to see:

• A hand is a collection of cards assigned to a player, sorted in insertion order.
• A hand may contain cards that have not been revealed yet.
• Passing cards is a two-step process that isn’t finished until the receiver’s turn.
• A discard pile is an append-only collection of revealed cards.

Using these basic ideas as a guide, Emma works on building some code to model the
hand and discard pile concepts. She begins by writing some functions to match the
various kinds of actions in the input files, so that something like +QC becomes
hand.add("QC").

In the process of coding up these models, Emma discovers that updating a player’s
hand involves more than just adding and removing elements from a collection. For
example, the behavior of the discard() function depends on whether the card has
been revealed yet or not, bringing up the question of how unrevealed cards ought to
be modeled.

Work part of the problem by hand before writing code | 47

Several other small “gotchas” like this come up as Emma works and she starts to get
frustrated. But when you remind her that working the problem by hand was only
about figuring out the big picture ideas, she realizes that it’s normal to hit some rough
patches when sorting out fine-grained details in code.

Emma works through a few more edge cases that weren’t easy to spot when working
the problem by hand. Eventually, her code starts working as expected in isolated tests,
so she manually translates the game transcript from the first sample data set into
function calls on her models.

Emma runs her script and is pleasantly surprised when it produces the correct output
on the first try. This small win is important because it will keep her motivated as she
works through the rest of the puzzle.

Validate your input data before attempting to process it
Emma turns her attention to the second practice data set:

Lil +5C +2H +8H +6D
Shady +QH +AC +7C +2D +8C +3S -??:Lil
Rocky +KS
Danny +4H
discard +4D +7D +JS +6S +6H +2C +5D +3C
Lil +??:Shady -6D:discard -??:Danny +?? +??
* +8H:Shady -2H:Danny +JD +2D
* +8C:Shady -8C:Danny +JD +4S
* +QH:Shady -2H:Danny +7D +AS
* +AC:Shady -8H:Rocky +AS +8D
* +8C:Shady -2H:Danny +10H +9H +4C
* -8H:Danny +8C:Shady +4S +AS

Noticing the small differences between how this file is formatted and how the first
sample file was laid out, she returns to the problem description to read the notes
about what this sample is for:

This file represents one round of the game immediately before Lil's turn.
In this sample, you know what's currently in each of the players' hands and
what's in the discard pile. Here there are six possible branches, only one of
which can match Lil's actual moves. See if you can determine which is the
correct set of moves, and deduce the cards in Lil's hand at the
end of the round.

Note that the invalid branches in this sample cover many (but not all) of the
corner cases you're likely to encounter in the main puzzle.

Emma tells you that she plans to begin by walking through the transcript and listing
out all the cards in play, similar to how you approached the first data set.

48 | Chapter 4: Developing a Rigorous Approach Toward Problem Solving

This is a good idea, but there is something else that is important to look at first. You
ask her to review the branch syntax to make sure that she fully understands how it
works before proceeding with her plan.

To test her assumptions, Emma constructs a table with the fully expanded turn
instructions for each branch. In theory, this should just be a matter of matching up
any action with a ?? to the corresponding action in each branch. In practice, it turns
out that not all branches are properly formed:

Emma is surprised by this discovery. The two of you talk a bit about it because there
is an important lesson to be learned here:

Emma: This feels like complication for the sake of complication. It doesn’t really add
anything to the interesting part of the problem, so why would the puzzle’s author want
us to jump through this extra hoop?
You: Well, I’d argue that it was most likely meant to make the puzzle a little more real‐
istic. Raw data is usually messy, so the idea of having to process this sample before we
can make use of it is only natural.
Emma: So are you saying that you knew the sample data would have problems, and
that’s why you had me hand-verify it?
You: No, it’s just a good habit to get into; otherwise, you can easily write programs that
take garbage in, and spit garbage out.
As soon as you identified a single branch that wasn’t in the correct form, you discov‐
ered the need to validate all of the branches. It only took you a few minutes to find this
issue, so it was well worth the initial time investment.
There are certain cases where assuming that data is in a valid format is a safe bet, but if
in doubt, it’s better to err on the side of caution.
Emma: OK, I think I understand that now, thanks.

Validate your input data before attempting to process it | 49

In order to write a validation method, Emma needs to process Lil’s turns and extract
the actions with ?? in them. You suggest converting this data into an array of arrays,
to capture its basic structure in code:

Lil +??:Shady -6D:discard -??:Danny +?? +??

[[:receive, "Shady"], [:pass,"Danny"], [:draw], [:draw]]

From here, the same translation can be applied to each of the branches. If doing so
produces an identical structure, the branch is at least in the correct form. If it pro‐
duces a different result, it can immediately be marked as invalid.

Emma walks through the six possible branches in the sample file and manually trans‐
lates the lines of text into the format you suggested. In doing so, she finds that the
first three exactly match the structure of Lil’s turn, while the last three all produce
non-matching structures.

Expected structure (+??:Shady -??:Danny +?? +??)

[[:receive, "Shady"], [:pass,"Danny"], [:draw], [:draw]]

Passes to wrong player (+AC:Shady -8H:Rocky +AS +8D)

[[:receive, "Shady"], [:pass, "Rocky"], [:draw], [:draw]]
 ^^^^^^^^^^^^^^^^

Draws extra card (+8C:Shady -2H:Danny +10H +9H +4C)

[[:receive, "Shady"], [:pass, "Danny"], [:draw], [:draw], [:draw]]
 ^^^^^^^

Actions out of order (-8H:Danny +8C:Shady +4S +AS)

[[:pass, "Danny"], [:receive, "Shady"], [:draw], [:draw]]
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The two of you work together to implement a validation method based on these
ideas, and then use a similar approach to build a parser for the game transcripts.
Emma learns some interesting text processing tricks along the way, but they’re not the
focus of the lesson. She quickly shifts her attention back to the problem at hand.

50 | Chapter 4: Developing a Rigorous Approach Toward Problem Solving

2 The state of everyone’s hand is known with one exception: Shady passed a card to Lil, but that card has not
been identified yet. That said, it must be one of the cards listed in Shady’s row.

Make use of deductive reasoning to check your work
With the improperly formed branches weeded out, the next step will be to logically
verify the three remaining branches to figure out which one lists the correct sequence
of moves. At this point, a sketch of the state of each player’s hand is exactly what’s
needed, so Emma puts one together:2

Using the table of moves she produced earlier, Emma walks through the branches one
by one and hand-verifies them while talking out loud:

Emma: The first branch is Lil +8H:Shady -6D:discard -2H:Danny +JD +2D.
Right away, I can see this is impossible. Because Lil already had the Eight of Hearts in
her hand, there is no way that Shady could pass it to her in this turn.

Make use of deductive reasoning to check your work | 51

You: That’s right! How about the next one?

Emma: The second branch is Lil +8C:Shady -6D:discard -8C:Danny +JD +4S.
Shady does have the Eight of Clubs, so there’s no reason she couldn’t pass it to Lil. Lil
does have the Six of Diamonds, so discarding it would be a valid move. If Shady did
pass the Eight of Clubs to Lil, then Lil could definitely pass it immediately to Danny, so
no problems there either.
Finally, both the Jack of Diamonds and the Four of Spades don’t appear in anyone’s
hand or in the discard pile, so there’s no reason why Lil couldn’t draw them from the
deck. I’d say this branch is possible.
You: Sounds right to me. Because this data set only covers a single round of the game,
we know (in theory) that the third and final branch is impossible without even looking
at it. But just to check our work, we should verify it nonetheless.

Emma: OK, the third branch is Lil +8H:Shady -6D:discard -2H:Danny +7D +AS.
I see immediately that this has the same problem as the first branch; it’s impossible for
Shady to be passing the Eight of Hearts because it’s already in Lil’s hand.
You: Nice work; it looks like we’ve got our answer. Now it’s time to move on from the
practice data sets and start exploring the real challenge.

Author’s note

In the process of constructing this dialogue, I had made a tran‐
scription error that incorrectly led me to believe the second branch
was invalid. It wasn’t until I wrote the “let’s check just to be sure”
line that I caught my error. Embarrassing, but a funny enough
coincidence that proves the point of this section.

Solve simple problems to understand more difficult ones
Working with two practice data sets has given Emma a solid starting point for solving
the puzzle, but the difficult part will be combining these ideas together in order to
process a full game with many branches per round.

Before going any further, you check in with Emma to see what her plans are for the
remaining work to be done:

You: Can you walk me through what you plan to do next?
Emma: Sure. The challenge data set is basically a combination of the two samples we’ve
seen so far, right?
You: That’s right. The first data set showed you what a transcript of game actions
looked like, and from that you were able to start tracking everyone’s hands as the game
played out.
The second data set showed you how to narrow down the possible sets of actions on
Lil’s turn until you found the only branch that would not lead to an impossible move.

52 | Chapter 4: Developing a Rigorous Approach Toward Problem Solving

Emma: OK. I should update the code so that whenever we get to Lil’s turn, we’ll first
eliminate any branches that aren’t in the proper form.
From there, we take one branch at a time and run its sequence of actions. If we can run
all the actions listed in the branch without running into an impossible move, we will
know we found the right branch.
What I don’t understand is why the challenge data set is so small. With only three pos‐
sible branches for each round, and only five rounds to go through, wouldn’t that at
most require checking 15 different possibilities? That seems really easy to do by hand.
You: Nope, there are actually 243 different possibilities. To understand why, go ahead
and check out the three branches for Lil’s first round in the challenge data set. Use the
same process of elimination we did earlier, and see where it gets you.

Emma reviews the first several lines of the challenge data set:

Shady +?? +?? +?? +??
Rocky +5S +QH +6H +JC
Danny +?? +?? +?? +??
Lil +7C +3S +8D +9H
Shady -4H:discard -??:Danny +??
Rocky +10D -10D:Danny +4S +2D -4S:discard -JC:Lil
Danny +??:Shady +10D:Rocky +?? +?? +?? -4D:discard
Lil +JC:Rocky +?? -??:Shady +??
* +JH -7C:Shady +10C
* +JH -8D:Shady +9S
* +JH -8D:Shady +10C

(... next four rounds would follow here ..)

After scribbling notes down for a few minutes, Emma notices what you had hoped
she would: without looking beyond the first round, it is impossible to eliminate any of
the three branches listed for Lil’s first turn.

When she does look ahead, Emma starts to see how a particular branch choice might
lead to an impossible move on a future turn, but eliminating possibilities ends up tak‐
ing much more effort than she originally thought it would. Discovering a dead end
can mean playing out the game all the way to the last line of the transcript, making
this data set much more difficult to process by hand than the practice sets were.

With this detail of the puzzle clarified, there is a whole lot more to think about.
Emma takes a short break to process it all, while you think through how you might be
able to help her get through this tricky part of the problem.

When Emma returns, you show her a simplified problem that you’ve constructed to
help her understand the work that needs to be done:

Solve simple problems to understand more difficult ones | 53

Emma: Wow, that’s a lot of arrows! What am I looking at here?
You: Well, it’s basically an idealized form of the Counting Cards puzzle. I know it looks
a bit abstract, but I promise it is directly relevant to solving the problem.
It consists of five sets of letters. The goal of this puzzle-within-a-puzzle is to pick
exactly one letter from each set so that you end up with {A, B, C, D, E} in the end.
The order that you collect the letters in doesn’t matter, so long as you pick up all five.
The arrows represent all the possible sequences of choices you could make if you were
choosing letters blindly. It amounts to a total of 243 distinct paths from top to bottom.
Emma: Ah, I see what you did there. The five sets represent the five rounds of the card
game, the three choices per set represent Lil’s branching turns, and the 243 possibilities
are all the different combinations that can be made of those branches.
Seeing the structure of the problem definitely helps, but I’m still a little lost on how to
translate this into implementation details. Can you give me a few more hints?
You: Sure. Imagine that you don’t know much about how everything in this graph is
laid out, but you do know the goal: to get a set that (when sorted) is equal to {A, B, C,
D, E}. From that, you can start to derive rules for when you know you’re on a dead-
end branch. Can you think of one?

Emma: I see some other letters in the sets, like F and G. If we ran into one of those, we’d
know it wasn’t a valid choice, and so we could eliminate the branch straightaway.
You: Yep, that’s roughly similar to when we reject branches in the card game that don’t
match the structure of Lil’s turn. Can you find another constraint that’s more subtle?

54 | Chapter 4: Developing a Rigorous Approach Toward Problem Solving

Emma thinks for a few minutes, and then realizes that if you ever happen to pick the
same letter from more than one set, it’s impossible to produce the correct output. For
example, if you chose the first elements of the first three sets, you’d end up with ABA.
With only two sets left of letters to pick from, it’d be impossible to complete the full
{A, B, C, D, E} set.

You point out the similarity between this observation and the idea of making an
“impossible move” in the card game, and Emma smiles as she begins to understand
what you’re getting at.

You: At this point, we’ve simplified the puzzle to a graph traversal problem. We use a
selection criteria to identify dead-end branches, and we keep iterating until we find the
one path that gets us all the way to the end.
Emma: I understand the selection part, but I might need some help in figuring out
how to iterate through the different paths.
You: Well, the data set is small enough where it’s probably not worth looking for some
sort of fancy heuristic to narrow the search space. Instead, you could probably use a
simple depth-first search.
Emma: So you mean: keep taking the left-most path until you hit a dead end, then
jump one level up and try the next path, repeating that over and over?
You: Yep! Go ahead and look at the graph and tell me what the first few dead-end paths
would look like.

Emma: ABA, ABB, ABEF, ABEA, ABEB… Should I keep going?

You: Nope. You’ve successfully exhausted the AB path. The next step would be to go on
to AD and repeat the process, and so on from there.
Now what I’d like you to do is write the program that solves this little puzzle. I can help
you where needed, but it should be fairly straightforward.

It takes some effort, but Emma eventually gets her program up and running. When
she’s done, she has a script that recursively walks through the graph, trying out the
various different paths.

Emma runs her program, and then traces the path it outputs onto the original graph,
producing the following result:

Solve simple problems to understand more difficult ones | 55

You: Awesome! You found the needle in the haystack. Now should we get back to the
original puzzle and solve that too?
Emma: If you don’t mind, I think I’d like to solve the rest of this on my own. The stuff
you’ve showed me so far has been super helpful, and I think I can keep applying it to
sort out the rest of the puzzle.
You: Hey, that’s a great idea. I’m available to help if you need me, but as long as you’re
feeling up for it, finishing it on your own will almost certainly be more rewarding. It
also reminds me of the most important lesson from what we worked on today…
Emma: What’s that?
You: Real problem solving is often a solitary experience. You can get support from oth‐
ers, but in the end, you need to understand all the pieces of a problem for yourself in
order to see how it all comes together. That’s the essence of what it means to think rig‐
orously anyway: to understand something with a great deal of precision and detail.
Emma: That makes a lot of sense. And it seems like if you can take complicated prob‐
lems and break them down like we did today, they become more approachable. Before
it kind of felt like hitting a wall whenever I started working on a problem that I didn’t
immediately understand, but I think I might be able to look at things differently now.
You: Really good to hear that. I won’t lie, this is something that we all need to remind
ourselves of from time to time. But it seems like you definitely have the right idea.
Good luck with the rest of the puzzle!

As you pack up your things, you look over and see Emma still hard at work. A puzzle
that she had initially thought was totally beyond her reach has captured her interest
and attention, and now she has a great chance at solving it.

56 | Chapter 4: Developing a Rigorous Approach Toward Problem Solving

Recommendations and reminders
• The raw materials of a problem description are often a scattered array of prose,

examples, and reference materials. Make sense of it all by writing your own
notes, then strip away noise until you are left with just the essential details.

• Behind each new problem that you encounter, there is a collection of simple sub-
problems that you already know how to solve. Keep breaking things down into
chunks until you start to recognize what the pieces are made of.

• Challenging problems are made up of many moving parts. To see how they fit
together without getting bogged down in implementation details, work through
partial solutions on paper before you begin writing code.

• A valid set of rules operating on an invalid data set can produce confusing results
that are difficult to debug. Instead of assuming that input data is clean, avoid the
“garbage in, garbage out” effect by validating any source data before processing it.

Questions and exercises
Q1: Think of an example from your own work where you had to apply a rigorous
problem solving approach. What was something you got stuck on before finally solv‐
ing the problem, and how did you end up getting unstuck?

Q2: There can be downsides to approaching problems in an extremely precise and
methodical fashion. What are a few situations where a rigorous thought process can
end up hurting more than it helps?

E1: Rigorous thinking is essential whenever you need to work with low-level, rigid,
context-free rules. Read about the “Anatomy of Information in Software Systems” to
see how these concepts apply in the design of file formats and protocols.

E2: Write a program that is capable of solving the {A, B, C, D, E} puzzle. Once you
have it working, generate a new data set that is 26 levels deep, with 26 choices per
level, and arrange it in such a way that there is only one unique path that passes
through all of the letters in the alphabet. Are you able to process this new data set
without modifying your program? If not, why not?

Solve simple problems to understand more difficult ones | 57

http://pbpbook.com/anat

You’ve made it to the middle of the book. Hooray!

Here’s another little riddle for you to solve, if you’re up for it…

Midway through the $tack, it’s time to unwind. A secret message is what you’ll find!

58 | Chapter 4: Developing a Rigorous Approach Toward Problem Solving

CHAPTER 5

Designing Software from the Bottom Up

Imagine that you are a visiting instructor in a software design
course, and you hope to bridge the gap between theory and practice.

Your friend Nasir is responsible for running the course, and he asked you to come
help out because he’s only had mixed results so far.

When reviewing a case study, Nasir’s students easily grasp the main ideas and they
ask creative questions that lead to great conversations. But when it comes to applying
design concepts in their own projects, most students struggle to make the connection.

The problem is that most of the students have not had much practical experience
with building software systems. This lack of perspective leads them to view software
design as an abstract exercise, rather than a concrete and essential skill set.

Textbook examples reinforce this viewpoint by demonstrating a top-down style
where design ideas just spring out of the woodwork. Real design doesn’t work that
way, but students often assume it does and end up feeling discouraged.

To help reveal where design decisions come from in the first place, you will build out
a small project in real time and discuss it with the class as you work. This way, the
students will be able to take an active role in the iterative design process that goes
along with building a system up brick by brick.

In this chapter…

You will learn a step-by-step approach to bottom-up software
design, and examine the tradeoffs of this way of working.

59

Identify the nouns and verbs of your problem space
Nasir kicks off the class with a brief discussion of what you’ll be building: a minimal
simulation of a just-in-time production workflow.

Rather than leading in with theory, Nasir instead describes how just-in-time delivery
has been used to make online shopping much more practical than it used to be:

• When a customer buys a product, it gets shipped to them within a day or two at
the most, typically from a location within 100 miles of wherever they live.

• Inventory levels at local warehouses are kept to the absolute minimum necessary
to prevent a product from going out of stock. Replenishment is done on a contin‐
uous basis; every time a local warehouse ships one of their products to a cus‐
tomer, a corresponding order is submitted to a larger fulfillment center.

• There is a constant flow of products from fulfillment centers to the local ware‐
houses, so any item that needs to be replenished is just thrown onto the next
truck, plane, or train headed to that location.

• Whenever inventory is shipped from a fulfillment center to a local warehouse,
replenishment orders are automatically submitted to third-party vendors, many
of whom also use a just-in-time production workflow to allow for ordering
replacement products in small batches.

• Even though running the whole ordering process from end to end might take
weeks, the flow of goods is set up in such a way that customers get their products
shipped from a nearby location that effectively never runs out of stock, and man‐
ufacturers produce a number of units roughly comparable to the amount that
actually get sold.

Under this model, products flow to where they need to be just in time, and this mini‐
mizes the amount of waste and waiting time throughout the whole production sys‐
tem. This way of working is common now but was considered a ground-breaking
industrial innovation just a few decades ago.

Nasir lingers on that point for a moment, and then signals to you that it’s time for the
lesson to begin. Without missing a beat, you share a convenient anecdote that reveals
some of the specifics what you’ll be modeling today:

You: My father worked on an assembly line all of his life, and saw his own company
transition from a big batch process to a just-in-time workflow.
Student: That must have been such a huge change! It seems like two totally different
ways of doing things.
You: Well, that’s just the thing. It was a huge change in how the company operated at
the business level, but at the production level it was an amazingly small change.

60 | Chapter 5: Designing Software from the Bottom Up

Before the transition, a crate of widgets would arrive from an upstream supplier, and
workers would process them in some way before passing them downstream to the next
station in the line.
When the company switched to just-in-time production, things pretty much stayed the
same—with one small tweak. The flow was reversed so that new widgets were pro‐
cessed only when empty crates returned from downstream stations.
Student: So in other words, your dad knew to start working whenever the next station
down the line needed more of whatever he was producing?
You: Yep! It wasn’t obvious to see from any one station, but the whole thing was
chained together that way: from the most simple parts at the start of the line to the
finished product at the end.
Working backward from customer orders, the entire assembly line was able to deter‐
mine exactly how many units to produce and when, without ever directly coordinating
with anyone except for their immediate neighbors.
This is a process that has always fascinated me, because it shows how very interesting
emergent behaviors can arise from seemingly simple building blocks. And for that rea‐
son, I thought it would be fun for us to model this behavior from scratch, and discuss
some interesting software design principles along the way.

When Nasir asks the class if that story explained enough about the just-in-time pro‐
duction workflow to begin simulating it, they laugh nervously as if they can’t tell
whether he is joking or serious. But then he immediately follows up with a more
manageable question: what were the important nouns and verbs in the story?

It takes a few minutes, but the students eventually identify many of the keywords that
are relevant to the simulation, including widget, crate, supplier, order, and produce.

You then ask the students to take two of these words and combine them in a simple
sentence that seems easy enough to implement. After a moment of quiet contempla‐
tion, one of the students shouts out a suggestion:

“I know! Let’s build a crate and put a widget in it!”

This is a great place to start, so you thank the student for her idea, and get to work.

Begin by implementing a minimal slice of functionality
To begin your demonstration, you prepare some minimal UI elements to work with,
consisting entirely of simple geometric shapes. You then wire up some basic logic,
while the students watch you work.

Within a few minutes you have a small rectangle on the screen with a red circle in it,
representing a rudimentary “widget in a crate.”

When you press the space bar on your laptop, the circle disappears. When you tap it
again, the circle reappears. You demonstrate this several times…probably a few more
than necessary to make the point.

Begin by implementing a minimal slice of functionality | 61

Regaining focus, you pull up a diagram that describes the API for the Crate object:

In order to even get to this starting point, you had to make several design decisions.
Subtle as they may be, these decisions will influence the rest of your design through‐
out the remainder of the project:

Nasir: As a quick recap of what you’ve done so far, there are now two objects in the
system: crates and widgets. A crate is a container that can hold widgets, and it is possi‐
ble for crates to be full. A widget is still mostly undefined, and I assume that it’s meant
to stand in for an arbitrary product of some sort?
You: That’s right. Looking ahead a little bit, the thing I’m interested in modeling is how
materials flow through a just-in-time production system—the actual contents being
processed don’t really matter. What does matter is the presence of these crates, because
we’ll be using those to determine whether new materials need to be produced or not.
Student: Oh, I think I see where this is going. You plan to make use of these crates in
the same way they were used in your dad’s factory: as a signal for ordering widgets.
You: Yes, exactly. Now let’s talk a little more about that. We already have crates imple‐
mented, and we can check their contents to see if they need to be replenished. But the
widgets are being generated out of thin air. What models are we missing?
Student: Some sort of supply source? Because that’s the whole point, right? We want to
show that removing widgets from a crate triggers some other process that produces
replacements automatically. So every crate should be associated with a supplier, and
that supplier should be able to detect when the crate needs refilling.
Nasir: It sounds like you’re suggesting that suppliers should be monitoring the status
of the crates, which isn’t entirely correct. Instead of the supplier checking to see

62 | Chapter 5: Designing Software from the Bottom Up

whether a crate needs filling, a supplier should be notified when items are removed
from a crate.

Student: How about an observer that gets called whenever pop() is called on a crate?
You: These are all interesting ideas, but we’re getting ahead of ourselves. Let’s limit our
scope for now and think, “OK, we’ve already received a refill order. What objects need
to collaborate in order to make that happen?”
Nasir: Good point. Figuring out how events should flow through the system is a sepa‐
rate concern from the actions that need to be carried out when an event occurs. Let’s
take this one step at a time.

As the students are starting to discover, one challenge of designing a system from the
bottom up is untangling the connections between objects so that they can be imple‐
mented in small slices rather than big chunks. But this is an important skill to develop
because it enables an incremental style of design.

* * *

You sketch out a rough workflow for resupplying a crate. In doing so, you introduce
an Order object that will be responsible for associating a particular supplier with a
particular crate:

One student asks what the point of the Order object is—wouldn’t it be simpler to
allow a Supplier to operate directly on a Crate?

This is a good question, especially at such an early stage in the project’s development.
It’s true that every model you include in a design adds some conceptual baggage, so
introducing superfluous objects into the mix is something worth avoiding.

But in this case, not modeling an Order object would lead to a potentially confusing
merge of physical and logical system behaviors.

On a real factory floor, upstream suppliers directly load materials into crates, making
it seem like the Crate is the relevant object that needs to be acted upon. However, the
crates themselves are just containers that convey nothing more than a limit on the
quantity of goods that might fit in them.

The real information about where the crate is going to be delivered to is either mem‐
orized by the workers on the line, printed out on a sheet of paper, or listed on a label
that is attached to the crate itself. This is what the Order model represents. It’s easy to
miss because it isn’t as visually obvious as materials being loaded in and out of a crate,
but it is part of the domain model nonetheless.

Begin by implementing a minimal slice of functionality | 63

With all the questions about the Order object wrapped up, you jump into implement‐
ing the resupply workflow. After a short while, the square and circle in your simula‐
tion are joined with a triangle and a line, and you’re well on your way to teaching a
basic geometry class:

These simple shapes represent far more interesting stuff going on under the hood, so
although they do not look like much they are still a meaningful sign of progress.

You explain to the students that when the space bar is pressed, the order.submit()
method is called, causing a supplier to produce a widget. Once generated, the widget
is pushed into the destination crate to complete the order. The students begin to see
how these basic building blocks will soon be combined in ways that will give rise to a
much more interesting simulation model.

Avoid unnecessary temporal coupling between objects
After a few days, it is time for your second demonstration. Since the last session, the
only significant modification you’ve made to the simulator codebase is to enlarge the
size of crates so that they can contain multiple widgets:

64 | Chapter 5: Designing Software from the Bottom Up

1 This is called the Zero-One-Infinity Rule of software design, and was originated by Willem van der Poel.

This small but important change allows your model to support the three essential
quantities1 in software design: zero, one, and many. Your earlier examples only dealt
with the first two cases, but from here on out you need to work with all three.

With a mechanism for resupplying crates already built, your next step is to trigger a
refill automatically whenever items are removed from a crate. You ask the students
for suggestions on how to do this, and one suggests calling order.submit() immedi‐
ately after any call to crate.pop().

You make this small change and fire up the simulator. A full crate is displayed, and
you inform the students that you’ve wired up the space bar to do as they suggested.
You tap it once. Nothing happens. You tap it again—still nothing happens. Then you
jam on the keys wildly, and the display flickers slightly, but for the most part, you’re
staring at the same full crate that you started with.

You put some logging code in a few places to confirm that keyboard input is being
received, that both crate.pop() and order.submit() are being called, and that there
aren’t any unexpected loops or recursive calls. Everything looks fine. You comment
out the order.submit() line and press space a few times and the widgets get removed
one by one. You start with an empty crate and comment out the crate.pop() call
instead, and the crate fills up one by one.

Nasir asks the class if they know what is going wrong, and one student quickly points
out that the removal of a widget and the insertion of its replacement are happening in
the same animation frame. Because there is no delay between the two actions, it
appears as if nothing is happening.

To test this theory, you temporarily randomize the colors of the widgets being pro‐
duced. Although this demonstration generates a massively disorienting effect, it
proves the point quite well.

You: Now that we know what’s wrong, how do we fix it?

Student: Make the Supplier sleep for a second before it generates a new widget?
You: That’s a good idea, but we’re working in an asynchronous programming environ‐
ment. So there isn’t a direct way to tell a process to sleep. Instead, you’d set up some
sort of callback to be executed after a set period of delay.
Student: OK, do that then.

You: I would, but it’s not so simple. Right now when order.submit() is called, it
immediately triggers a call to supplier.produce(), which returns a Widget. The
returned Widget is then pushed into the Crate. If we change supplier.produce() to
use an asynchronous callback, it will no longer have a meaningful return value, break‐
ing the whole chain.

Avoid unnecessary temporal coupling between objects | 65

Nasir: So what we have here is a classic case of temporal coupling. There is a timing
dependency between the Order, Supplier, and Crate objects, because of the way
they’ve been designed. We’ll need to rework things to really solve the problem, but as a
quick workaround, let’s delay the entire order submission process so that it doesn’t get
executed until a second or so after the keyboard input has been received.

You implement Nasir’s suggestion and try it out. Sure enough, a widget disappears
from the crate as soon as you hit the space bar, and it is replenished about a second
later. You then remove three widgets in rapid succession, emptying the crate. After a
moment, the crate is full again, with all three replacements arriving at roughly the
same time.

The students are happy to see that things are working, but you’re quick to inform
them that this is a bit of a hack. In order to make things work properly, the workflow
will need some revisions.

You draw up a sequence diagram describing the new way that events will flow
through the system whenever an order is submitted:

The changes needed to implement this revised workflow aren’t huge.

First, you split up the responsibilities for the Order object so that submitting an order
and fulfilling an order are modeled as two separate events. From there, you modify
the supplier.produce() method to allow it to communicate via a callback rather
than a return value.

With this new design, order.submit() still calls supplier.produce() immediately,
but from there it is up to the Supplier object to decide if and when to call order.ful
fill() and complete the transaction.

After Nasir asks the students a few questions to confirm their understanding of this
minor refactoring, it becomes clear that they are able to trace the execution paths cor‐
rectly, but they still don’t quite understand the motivation behind the change.

You suspect that the problem is the students have not yet seen how this new workflow
leads to a flexible timing model. You quickly implement three different variants of
supplier.produce() to clarify that point:

66 | Chapter 5: Designing Software from the Bottom Up

1. Synchronous
Directly call the order.fulfill() method. This causes widgets to be resupplied
instantaneously, as they were in the original design.

2. Asynchronous (concurrent)
Use an asynchronous timer to run the fulfill() method after one second,
allowing orders to be processed simultaneously.

3. Asynchronous (sequential)
Drop all incoming orders into a queue that is processed sequentially at a rate of
one order per second.

Each of these implementations behaves very differently, but all three are supported
using the same Order interface. This proves that the temporal coupling present in the
original design has been eliminated, and that the system can now support whatever
timing model you’d like.

The class briefly discusses the different possible timing models and their tradeoffs:

• A synchronous model would work well for a step-based simulation, where an
event loop executes the actions one tick at a time. But this would mean either giv‐
ing up real-time interactions with the system, or writing messy code to “fake it.”

• An asynchronous concurrent model would be interesting, but without a more
complex UI it’d be difficult to reason about simultaneous order processing.

• An asynchronous sequential model would strike a balance between the other
available options, in that it would allow real-time interaction with the system as a
whole by accepting new orders as they arrived. But the flow of widgets through
the system would have a consistent, predictable rhythm to it.

You suggest that the asynchronous sequential model might provide the right balance
between “interesting” and “easy to implement”—and the students agree with that
decision. Had this been a real project with preset requirements, you may not have had
the luxury to make this decision yourself, but breaking temporal coupling between
objects would still have allowed the decision to be deferred until later.

Gradually extract reusable parts and protocols
So far, you’ve built suppliers and crates, and you’ve come up with an ordering mecha‐
nism for refilling crates on demand. These basic building blocks provide most of
what is needed to run a just-in-time production simulator; from here, all that is left to
build is a “machine” that serves as both a consumer and producer of widgets.

After talking through some ideas with the class, you decide the machine will be
responsible for converting two input sources into a combined output stream. To get

Gradually extract reusable parts and protocols | 67

everyone thinking, you put together a mockup that shows what the simulator might
look like once we add this new feature into the mix:

Nasir attempts to get the students to explain how to implement this new model, but
they seem overwhelmed. When you take a moment to think about why, you realize
the students are focusing on what makes this system different from what they’ve
already seen, which has clouded their view of what has remained the same.

Taking a step back, you ask the students to consider a simplified system, made up
entirely of parts they are already familiar with:

You: In this example, there are three suppliers and three crates. To make it easier to
understand, assume these subsystems are completely independent from one another.
What happens if we remove a widget from any one of the crates?
Student: That will trigger a resupply order to be submitted, and then after some time,
the supplier will fulfill the order and a replacement widget will appear.
You: That’s correct! Now let’s make a tiny tweak to the system. Suppose that every time
the supplier on the far right fulfills an order, it also consumes a widget from each of the
crates to the left of it. What happens then?
Student: The crates on the left would need to be restocked, so orders would automati‐
cally be sent to their suppliers.
You: Exactly. Now if you revisit the mockup from earlier, it should be easier to under‐
stand how machines work. They’ll produce output just like a supplier, but in the pro‐
cess of doing so, will consume widgets from upstream crates. When that happens, that
will trigger resupply orders to their suppliers, creating a small but complete just-in-
time production workflow.

68 | Chapter 5: Designing Software from the Bottom Up

After hearing your explanation, another student suggests making a Machine a sub‐
class of a Supplier, in order to reuse the current Order object. Rather than respond‐
ing to this suggestion directly, you invite the class to review the Supplier object’s
implementation and come to their own conclusions.

The students see that the core responsibility of the Supplier object is simple: it gen‐
erates a new widget, and then calls order.fulfill() to complete a resupply transac‐
tion. This would be achievable with a single line of code if the Supplier immediately
fulfilled its order, but the simulation’s timing model complicates things a bit.

Buried in the internals of the Supplier object, there is a bunch of code that imple‐
ments a rudimentary asynchronous sequential work queue. Nasir quickly points out
an opportunity to reuse this code, because machines will need to implement delayed
order processing in much the same way that suppliers already do. The only remaining
question is how to reuse the code:

Student: So is this a good reason to create a subclass? It looks like there is quite a bit of
code that could be shared between the Machine and Supplier objects if we did.
Nasir: Well, let’s ignore everything else those two objects have in common for a
moment, and think purely about this work queue implementation. It’s just an ordered
list of arbitrary functions that get executed one-by-one after a fixed time interval.
What about this process is specific to the concept of a Supplier?
Student: Nothing really, I guess. Are you saying it’s just an implementation detail?
Nasir: Not exactly. I’d say it’s a missing abstraction in the toolchain we’re using. An
asynchronous work queue is an extremely generic construct, but since we don’t have
one baked into the language we’re using, it was necessary to build one from scratch.
You: I had thought about making the work queue its own object from the start, but
then I realized it might lead to this fascinating conversation if I opted to defer that
decision until later.
Nasir: So in other words, you elected to make a just-in-time design decision? How
very meta of you!

Despite the cheesy pun, deferred decision making is an important part of bottom-up
design. Extracting objects too early and then trying to imagine future use cases can
lead to awkward interfaces; but when you fit an interface to real needs, it is easier to
come up with a better design.

Getting back to the problem at hand, you take a few moments to move some func‐
tions around in the codebase, and then produce the following API documentation for
the newly created Worker object:

Gradually extract reusable parts and protocols | 69

2 A proper fix to this problem would have been to go back and add a reference to a specific Order in the Crate
object, but imagine that the visiting instructor was pressed for time and didn’t want to think through that
design decision yet. Instead, a workaround was cooked up on the spot that swept those details under the rug
and allowed the lesson to focus on other, more important points.

After this refactoring, there isn’t a whole lot of code left in the Supplier object, so the
temptation to use it as a base class goes away. Instead, you copy and paste the few bits
of useful boilerplate that remain and begin implementing the Machine object.

You start by adding some basic functionality for associating machines with upstream
supply crates, which goes smoothly. But things get a little more complicated from
there, and you need to make a few adjustments to the Crate object in order to sup‐
port the new Machine construct.

The changes you end up making are not huge, but they represent the kind of warping
and bending that can happen when an object gets reused outside of the context it was
originally designed within:

• In the simple relationship between a single supplier and a single crate, it’s not
important to know if a crate is empty or not—as long as a resupply order is sub‐
mitted whenever a widget is removed from a crate. But a machine can only fulfill
its order when all of its upstream supply crates have widgets in them, so you
implement crate.inStock() method to access this information.

• Every order holds a reference to a crate, but a crate does not hold a reference to
an order. This works fine at the top level of the system where both Crate objects
and their associated Order objects are defined, but it gets messy when you bring
machines into the mix. To make it possible for a machine to both consume widg‐
ets from its input crates and submit a resupply order at the same time, you use a
hack involving a closure that is neither elegant nor easy to explain.2

70 | Chapter 5: Designing Software from the Bottom Up

You freely admit that unexpected design warts at the connection points between
objects are one of the downsides of building things from the bottom up. But to
restore a sense of optimism, you show the students a working version of the machine,
complete with live updating counts of the orders flowing through the system:

Despite the fact that you refactored some internals and added a few helper methods,
no breaking API changes were needed to support this new feature. That is a sign that
the overall design is working out well so far.

Experiment freely to discover hidden abstractions
Now that the hard work is done, Nasir gives the students some time to suggest small
changes to the simulation that might test the strengths and weaknesses of its design.

They start with things you expected, like varying the speed of production and size of
the crates for different suppliers and machines. It’s fun to watch the system dynami‐
cally rebalance workloads in response to bottlenecks. They continue to explore these
ideas for a while, but the outcomes do not reveal much of anything about the simula‐
tor’s design.

To steer the students toward a slightly more interesting discussion, Nasir asks them to
suggest a new kind of machine to implement. One student recommends modeling a
purification process: a machine that operates on a single input source and produces a
single output, but transforms the type of widget in the process.

Nasir starts to respond to the student, but before he can finish, you already have the
new machine up and running. You feed its output into a combiner machine to make
for a slightly more interesting example:

Experiment freely to discover hidden abstractions | 71

At first, Nasir assumes that you’ve already considered the possibility that a student
would ask this question and wrote some code in advance to account for it, but you
quickly reveal that isn’t the case.

Instead, it has to do with how you’ve defined the concept of a combiner: it’s a
machine that consumes a widget from each of its input supply crates and then pro‐
duces some output widget.

From this definition, it’s possible to derive a purifier machine as a combiner with just
a single input supply crate. And because of that, you are able to implement this new
feature without writing any new code.

Another student takes things even farther down the rabbit hole by suggesting it might
be possible to create a machine that works the same way that the Supplier object
does by having no input supply crates, because an all condition applied to an empty
set is always true.

This suggestion catches you by surprise, because you hadn’t thought about that at all
when you first built the supplier objects. But sure enough, it works!

The students come up with other variations on this theme, including circular depen‐
dencies between machines, and multiple machines feeding from a single input source
—all of which work as expected, even though you never explicitly planned for those
use cases when building the system. The emergent properties of systems designed
from the bottom up are fascinating, and are often difficult to predict.

Sensing the lesson has reached a good stopping point, Nasir attempts to wrap things
up by telling the students that although this kind of experimentation is a lot of fun, it’s
only meant to help discover possible abstractions that could then be formally sup‐
ported if they prove to be useful. It’s not an invitation to discover a “hidden feature”
and immediately put it into use without careful thought.

The students seem to understand this point well, and you’re glad Nasir reminded
them of it because sometimes you forget it yourself.

72 | Chapter 5: Designing Software from the Bottom Up

Know where the bottom-up approach breaks down
Feeling glad that the class ended on a high note, you start to pack up your things
when a student asks if there’s time for just one more question:

Student: Can this technique of casually experimenting with a domain model also be
used to identify the weak spots of a design?
You: Absolutely. You can, of course, poke holes in anything if you look for weird
enough edge cases; but if you stay within the realms of reason and run into problems,
it may be a sign of a problem that needs to be addressed sooner rather than later.
Student: Well, how about this? Machines can easily handle zero, one, or many inputs.
But so far, we’ve only tested them with a single output. What if we build a splitter
machine—that is, one that takes a single input source and then generates two outputs?
You: Hmm…great question. I’d need to think on that one for a bit.

A few students linger after class as you spend a few minutes trying to add a splitter
machine to the simulation. Eventually you get something working, but you’re not
happy with the way the code looks.

You start to think about why this feature was so much harder to implement than the
others, and that’s when you notice the fundamental difference in structure. The
combiner, purifier, and generator machines all fit the pattern of n inputs being
mapped to a single output (where n=many, n=1, and n=0, respectively). But the split‐
ter would map n inputs to n outputs, and that changes the nature of the problem.

This is not necessarily a sign of a bad design, but it illustrates the tradeoffs between
the top-down and bottom-up approaches. In a top-down design, you would have
thought about the supported machine types at the beginning of the process, and then
built an abstraction to support those cases. That might have led to a system that had
more carefully thought out integration points, but it would have complicated the code
for the simple cases—and would have required a more involved planning process.

You explain to the students that in practice, top-down design and bottom-up design
work like a spiral. Bottom-up design is good for exploring new areas and keeps things
simple as you get some software up and running. When you hit dead ends or rough
patches, then top-down mode is useful for considering the bigger picture and how to
unify the connections between things. The two techniques are not at odds with each
other; they’re just meant to be used for different purposes.

The student who asked about the splitter machine smiles as you thank her for asking
an excellent question. Nasir jots down notes to share with the others who missed this
bonus lesson, but you can tell that those who stuck around are glad they did.

Know where the bottom-up approach breaks down | 73

Recommendations and reminders
• To get started on a bottom-up design, list a handful of important nouns and

verbs in the problem space you are working in. Then look for the shortest mean‐
ingful sentence that you can construct from the words on that list. Use that sen‐
tence as the guiding theme for the first feature you implement.

• As you continue to add new functionality into your project, pay attention to the
connections between objects. Favor designs that are flexible when it comes to
both quantities and timing so that individual objects don’t impose artificial con‐
straints on their collaborators.

• When extracting reusable objects and functions, look for fundamental building
blocks that are unlikely to change much over time, rather than looking for super‐
ficial ways to reduce duplication of boilerplate code.

• Take advantage of the emergent features that can arise when you reuse your basic
building blocks to solve new problems. But watch out for excess complexity in
the glue code between objects: messy integration points are a telltale sign that a
bottom-up design style is being stretched beyond its comfort zone.

Questions and exercises
Q1: Some work environments are well suited for a bottom-up design style, while oth‐
ers aren’t. What are some non-technical (i.e., business level) obstacles that could get
in the way of applying the techniques discussed in this chapter?

Q2: Suppose you’ve decided to build your own email client. What are the important
nouns and verbs in this problem space? What is a simple sentence using those words
that might describe a good starting point for a first feature to implement?

E1: Spend 20–30 minutes studying the concept of Connascence, and write down
some notes on how it relates to the ideas from this chapter.

E2: Answer Q2 and follow through with implementing the minimal slice of function‐
ality you identified as good first feature for an email client. Narrow the scope as much
as you can to complete this exercise in a single sitting.

74 | Chapter 5: Designing Software from the Bottom Up

http://connascence.io/

CHAPTER 6

Data Modeling in an Imperfect World

Imagine that you work for a small business that is in the early stages
of replacing a decade-old time tracking application.

Your coworker Mateo was the main developer for the original application, which
replaced a tedious paper process that everyone hated. The software has served its pur‐
pose over the years, but a decade of constant use has revealed some of its weak spots.
In particular, the application’s core data model has a few rough edges that should not
be carried over into the new system.

Because you weren’t involved in developing the original application, Mateo is count‐
ing on you to look at the project with a fresh pair of eyes. You’ve spent the last few
days reading the old codebase and playing around with ideas, and today you’ll present
your plan for building a better system.

The challenge will be to balance what is technically ideal with the needs and working
style of the company. Data modeling and workflow design go hand in hand; they
work best when they’re thought about together.

Mateo will help you with the historical context around the project, and the two of you
will work together to design a replacement that can serve the business for many years.

In this chapter…

You will learn how small adjustments to the basic building blocks
of a data model can fundamentally change how people interact
with a system for the better.

75

Decouple conceptual modeling from physical modeling
You begin with an idealized example of how employees use the time tracking system
on any given workday:

• 8:30 AM: Clock in at the start of the workday.
• 1:30 PM: Clock out when leaving for lunch.
• 2:30 PM: Clock in after returning from lunch.
• 5:15 PM: Clock out at the end of the workday.

In the current application, this sequence of events would create a pair of WorkSession
records, which are modeled as intervals in the database. One would run from 8:30
AM to 1:30 PM, and another from 2:30 PM to 5:15 PM.

You point out that this design makes sense as a conceptual model, but it unnecessarily
complicates raw data manipulation. Mateo asks you to give an example and you’re
happy to do so:

You: Suppose an employee forgets to clock in at 8:30 AM, but remembers all the rest of
their punches for the day. What intervals will be created then?
Mateo: Hmm…it’ll misinterpret the 1:30 PM punch as an IN punch, because that
would be the first punch entered for the employee on that day. From there, it’ll create
an interval from 1:30 PM to 2:30 PM, and then another that starts at 5:15 PM but
leaves its finish time undefined.
You: Exactly! Until this error gets corrected, the data itself will be out of sync with real‐
ity, in a pretty confusing way. To make things worse, editing the data to get things back
into a consistent state would involve touching four separate fields spread across two
records, which is a confusing process.

You illustrate your point by showing a table with the two work session records and
how they would need to change:

76 | Chapter 6: Data Modeling in an Imperfect World

You also mention that you’ve taken a look at how often missed punches happen in the
system, and that the data shows that this is a daily headache for the management staff.

Mateo spends a moment thinking about the problem, and he remembers that it is a
relatively recent one. Up until a couple of years ago, employees only punched a clock
twice a day. In that original workflow, the employee would have punched in at 8:30
AM and out at 5:15 PM, then a predefined amount of lunch time would automatically
be deducted from their hours. With only a single IN punch and OUT punch per day,
times could be edited as needed without any complications.

Seven years after the system was created, company policy changed and it became
mandatory to record punch times for all breaks. The system needed to be updated to
support this new rule, but it was done on a shoestring budget, and by then the code‐
base had degraded in the way that legacy projects left untouched for years often do.
Under those constraints, the idea of improving the workflow to fit the new require‐
ments was out of the question.

You’ve identified this design flaw as a problem that is worth fixing in the new system,
and have a specific solution in mind:

You: My goal is to eliminate the need to modify a good punch in order to correct an
error. If you need to add a missing punch, it should be possible to key in that one
missed time while leaving everything else untouched.
In order to make this happen, we’d stop modeling work sessions as intervals in the
database, and instead record punches as individual events. From there, we’d convert
raw punch data into intervals at the application level whenever we need to display a
report or run a computation.
Mateo: This won’t change the fact that if a punch is missed, the timesheet will still
show incorrect IN/OUT pairs until it gets corrected.
You: That’s true, although in the current system it isn’t just the reports that can break—
the data itself gets corrupted. So you end up editing a bunch of fields just because the
system put the punch data in the wrong place.
With the new model, basic facts of the system stay accurate even if the reporting still
gets out of sync with reality in certain edge cases. Whenever an employee records a
punch, that actually happened, so the system can treat it as a fact. Work sessions gener‐
ated from those punches are a muddier concept, and this approach cleanly separates
the two.
Mateo: Got it! Then yeah, this makes sense. I still would like to see an example of how
the new model will work, though.

You draft up another quick figure to demonstrate that in the new model, a missing
punch can be directly added to the punch list with no other modifications needed:

Decouple conceptual modeling from physical modeling | 77

1 In the best-case scenario, this might mean figuring out what is causing the employee to begin working before
clocking in. But in the worst-case scenario, this pattern of behavior could be a sign of someone intentionally
falsifying their time records. In either case, an audit log is helpful for detecting the problem and can also serve
as evidence later as to why the behavior is being questioned in the first place.

From here, you can convert the data into WorkSession objects at the application level
by creating a new interval for each consecutive pair of punches. But since these inter‐
vals would be dynamically generated at runtime, no special consideration needs to be
given to them when the raw punch data is updated.

In a system with messy data sources, it’s often better to preserve some degree of flexi‐
bility by not imposing too much structure at the physical data modeling level.

Design an explicit model for tracking data changes
There’s only so much you can guess at when staring at code that was written a decade
ago, so you ask Mateo to fill in some details about how the existing system handles
audit logging. He shares a bit of the backstory with you to help you understand what
needs drove the implementation of the feature in the first place:

• It was well understood from day one that the software needed a comprehensive
audit trail for any changes to time records. The data in this application corre‐
sponds directly to what employees get paid—meaning the potential for fraudu‐
lent management activity couldn’t be ignored.

• Original punch data from employees would also need to be reviewed from time
to time, to catch discrepancies in employee records. For example, if someone
consistently misses punches or requests that later punch times be adjusted to
reflect an earlier start time, it could be a sign of a problem.1

• The auditing requirements were understood to be protections against truly
exceptional circumstances. In the entire history of the application, the company
has only needed to dig into these logs a handful of times—so history has proven
that assumption to be accurate.

78 | Chapter 6: Data Modeling in an Imperfect World

To keep costs down, Mateo used a third-party library that provides functionality sim‐
ilar to that of a backup mechanism, but for database records. So whenever a record in
the old system is updated, the workflow looks something like this:

1. Create a read-only copy of the record before it is modified.
2. Update the record with whatever changes you need to make.
3. Update the admin_id field to indicate who approved the change.
4. Increment the record’s version number.

The copied records are stored in their own versions table, but have all the necessary
information to review changes between versions, or revert to an old version if neces‐
sary. The main caveat is that because this is all done at the database level, the concept
of a revision is tied to a record insert or update, rather than to a meaningful business
transaction.

To demonstrate how the versioning mechanism would work for the “add a missed
punch at 8:30 AM” scenario you’ve been using throughout the discussion, Mateo
cooks up the following example:

He attempts to explain how this works, knowing that it’s a confusing process that
ought to be improved upon in the new system:

Mateo: In order to add the missed punch, a new version gets created for each of the
two work sessions. And you can see from the data that these changes were made by a
manager, because they include an ADMIN_ID.
You: But how do you show that these two changed records are actually part of a single
change request?
Mateo: You can’t. Not directly from the data, anyway. You’d have to pull the full history
of work sessions for an employee on a particular day and just infer what happened
from the changes that were made.
You: So, you mean like noticing that the 2:30 PM OUT time in version 2 of session
1001 ends up becoming the IN time in version 2 of session 1002?

Design an explicit model for tracking data changes | 79

Mateo: Uh…yeah. This is super confusing, and the few times I’ve needed to run
reports against it, I scratched my head for a while until I sorted out what happened;
then I’d send a clean report to the management team. The data itself is a giant mess,
though. I’m thankful that the need to work with it has been so rare that I haven’t had to
think about this much.
You: I imagine it easily gets even worse, too. What happens if there’s a typo when the
manager enters a revised time, and then they go back and correct it later? Does that
create a new version too, even if they fix it immediately after submitting the change?

Mateo confirms your point with a nod, then tells you that he recognizes the weak
spots. He is very interested in hearing your new path forward.

You start describing a design where the audit log isn’t a bolt-on feature implemented
at the database level, but instead is explicitly modeled as part of the business domain.

Knowing that some sample data will help Mateo understand better, you then show
him the following example:

You explain that a TimesheetRevision represents the high-level information about a
change: which workday it is for, a note explaining why the change is needed, a refer‐
ence to the admin who approved the change, and so on. From there, the PunchAdjust
ment model captures the individual punch that needs to be added to the timesheet.

You then show Mateo a few examples of how your new model would support some of
the other change requests that are common within the company.

80 | Chapter 6: Data Modeling in an Imperfect World

An employee who forgets to punch in until after an early morning meeting:

An employee who forgets to record their lunchtime punches:

These examples illustrate some of the benefits of the new design, but Mateo still has a
few questions for you:

Mateo: Overall, I agree that this approach makes the audit trail easier to understand.
But what else does this do for us?
You: Honestly, I modeled things this way at first just to clean up the auditing system,
but then I realized that it can enable a much better workflow for administrators.
Mateo: How so? I can’t really see that from what you’ve shown so far.

You: In the existing system, WorkSession records are edited directly, and the auditing
tool you are using creates a read-only backup before any modifications are applied.

But when you edit multiple WorkSession records simultaneously as part of a single
change, there’s no easy way to tie them together. This limits (or at least complicates) the
kinds of features we can implement that would make the punch editing process less
error prone.
Mateo: Can you be more specific? Keep in mind that I probably have serious tunnel
vision because I’ve been thinking in terms of how the old system has worked for over a
decade now.

Design an explicit model for tracking data changes | 81

2 Event Sourcing is a pattern that is meant to make changes to a data set explicit, reversible, and auditable.
3 This problem is well suited for event sourcing because of its small number of possible state transitions. More

complicated models might require complex database queries, and might have performance concerns that you
would need to consider when evaluating the tradeoffs of different modeling patterns.

You: Sure! Wouldn’t it be nice if you could review the pending changes to a timesheet
before updating the official records?

If we use the TimesheetRevision model to generate a live preview, any mistakes could
be corrected before the changes were committed and signed off on.
Mateo: Hmm…yes! That would be useful. Now I think I get why you modeled things
this way: you’re planning to use the TimesheetRevision and PunchAdjustment models
to drive changes to the Punch records, rather than the other way around.
You: Exactly. I’m attempting a rough approximation of the event sourcing2 pattern. By
representing the changes we’d like to make to the timesheet as a sequence of Punch
Adjustment events, we can defer updates to the raw Punch data until later.

Still trying to wrap his head around the event sourcing pattern, Mateo asks what
would happen if the data ended up in an inconsistent state. But the whole point of
modeling things this way is to avoid that problem in the first place.

The event sourcing pattern models individual events as immutable data; they’re raw
facts and they never change. By running through a sequence of events and computing
a result, you can get a projection of the current state of the system. But since data
flows in one direction in an event-based model, that state will always be exactly equal
to the combination of events that generated it.

For each individual Punch, the complete lifecycle is straightforward. Punches can only
be created in one of two ways: via the timeclock that employees use to clock in and
out, or via a PunchAdjustment that is approved by a manager.

No matter how it is created, once a Punch record comes into existence, its timestamp
never changes. The only change that can happen to a created Punch record is for it to
be marked as removed, and the only way that can happen is through an approved
PunchAdjustment. Once a Punch is removed, it is never interacted with again.

You point out to Mateo that in this sense, a Punch in the new system only has two
states: created and removed. And since each TimesheetRevision represents a coher‐
ent batch of changes to punches, you can make sense of what was modified and why.3

Mateo pauses to think for a moment before asking a follow-up question:

Mateo: This idea sounds promising, but how will we deal with conflicting Timesheet
Revision requests? It could get confusing if you have two requests simultaneously: one
to add a punch and another to remove a punch, and they get approved separately from
each other.

82 | Chapter 6: Data Modeling in an Imperfect World

http://pbpbook.com/event

4 For a very interesting read on how mutable state can greatly increase the complexity of a program, see Ben
Moseley’s “Out of the Tar Pit”.

You: That’s a good question. If many different batches of changes to a timesheet were
open simultaneously, that would get pretty confusing, and could lead to inconsistent
data. And we certainly don’t want to think about doing N-way merges!
To prevent these complications, we can constrain the system so that no more than one
TimesheetRevision can be in an open state for each employee/workday combination
at any point in time. An open TimesheetRevision can have adjustments added to or
removed from it before it is approved, but the combined result will be a single coherent
timesheet for the day in a “pending” state.
Mateo: OK. We’ll need to see how that works in practice, but it seems like an accepta‐
ble constraint for now.

As this discussion wraps up, you notice that there is a common theme that seems to
be guiding your new design: reducing incidental complexity as much as possible by
minimizing mutable state.

There is a whole lot more that can be said about this topic,4 but you’re already itching
to move on to your next big idea.

Understand how Conway’s Law influences data
management practices

Organizations which design systems are constrained to produce designs which are copies of
the communication structures of these organizations.

—Melvin Conway

You ask Mateo how timesheet change requests are currently handled by the business,
and he comes to realize that may be the biggest weak spot in the current workflow.

The process is completely ad hoc; each employee who needs a change communicates
it to their manager by whatever method happens to be convenient for them: whether
it’s an in-person conversation, an email, or a phone call. The manager then reviews
and aggregates these requests before sending them along to the payroll administrator,
who makes the changes within the time management system.

The feedback cycle is variable, but it’s often on the slow side. Confirmation of a
change can take days, and there tends to be a rush around the end of the pay period
to get all the timesheets reconciled so that checks can be cut. If a request gets dropped
or some details about it get miscommunicated, it might take several passes through
the feedback loop to get corrected.

Understand how Conway’s Law influences data management practices | 83

http://pbpbook.com/tarpit

Employees have discovered a workaround for this broken process: if they submit
their requests directly to the payroll administrator through an internal messaging fea‐
ture within the time tracking system, they tend to get acted on quickly, and with
greater accuracy. But in doing this, they cut their own managers out of the loop,
which is suboptimal from an administrative perspective. Some employees file dupli‐
cate requests in an attempt to both follow the rules and get a quick response, which
results in even more confusion.

The company is big enough where this messy process creates friction daily, but small
enough where fixing it hasn’t been a high priority. But it’s clear that an improvement
would be welcome as long as it wasn’t too costly to implement. Your theory is that
this problem will be easy to solve in the new time tracking system, because the new
data model will open up doors that were previously closed.

You: I know this might be a hard sell, but I think the real way to fix this issue is to let
employees adjust their timesheets themselves.
Mateo: I was afraid you might say that. I think it’s a great idea, but this is a really tough
topic to get into with management. I don’t even know where to begin the discussion on
this, because it is such a departure from how things are typically done around here.
You: Well, what do you think the major stumbling blocks are? What are they likely to
be most concerned about?
Mateo: For starters, I think they’ll be worried about technical training issues. Part of
the reason why the payroll administrator keys in all the changes rather than having the
managers at each office take care of that is because early attempts to train management
staff on the timesheet editing process didn’t go well.
You: Not to be too harsh, but do you think the poor design of the original system had
anything to do with that? Editing four text fields just because you want to add a single
punch to a sheet seems awkward even for a programmer.
The old system also had no way to review your changes, no way to easily undo a
change, and no way to edit a whole day’s worth of times at once. You were brought to a
separate form for each time interval you edited—a consequence of using an auto-
generated admin panel rather than building a custom interface.
Mateo: So you’re saying my user-hostile interface is to blame? I’m not sure I would
have agreed a decade ago, but I’ve definitely changed my perspective since then. But it’s
also such a large timescale that expectations around human-centric design have really
shifted, even in business applications.
That said, there are still plenty of programs in use here that were built 20 years ago or
more, all of which are even more awkward to use than the time tracking system. All of
this contributes to a generally uneasy relationship with software throughout the com‐
pany, and so even if we can convince them that we can build something learnable, we’ll
need to go beyond that to get their approval.
You: Well, what else do they really care about? If we know what matters to them, we
can find a way to emphasize those points when suggesting a change to the workflow.

84 | Chapter 6: Data Modeling in an Imperfect World

Mateo: I know the management staff cares a great deal about accuracy, even though
they take a very messy approach toward obtaining it. The idea of overpaying or under‐
paying an employee because their timesheet wasn’t correct is especially bothersome to
them, and rightfully so.
Their theory is if the payroll manager keys in all the changes, that leaves a single per‐
son directly responsible for maintaining accurate records. That one well-trained per‐
son knows all the common mistakes staff members might make, and can follow up
when a request looks problematic.
You: What do you think? Does that approach really work as well as they think it does?
Mateo: I think given the limitations of the existing system, they have an effective pro‐
cess in place. The main problem is that this creates a huge amount of work for one per‐
son, and it’s unclear to me whether that’s a cost effective way of doing things or not.
You: OK, I think I have a way to deal with these concerns. Before I get into that, what
else do you think matters here?
Mateo: Well, the other major recurring theme is a strong desire for effective oversight.
Even minor discrepancies tend to be followed up on, as a proactive measure to limit
fraud and abuse.
The tradeoff is that active monitoring tends to erode trust within the company, and it
also eats up time that managers might be able to spend on more important issues.

As you think through the cultural values that influence how the company operates,
you begin to see which design constraints are most important to keep in mind.

You realize that for an improved timesheet editing workflow to even be considered,
the proposed alternative would need to be easy to use, and it would need to make
data entry errors easy to catch and correct. It would also need to preserve or even
extend the effectiveness of management oversight built into the current process.

You believe that your planned workflow will meet all of these needs—and then some.
Mateo seems somewhat skeptical, but is also excited to hear your suggestions.

Remember that workflow design and data modeling go
hand in hand
Mateo agrees that allowing employees to modify their own timesheets could be a
major process improvement, as long as you frame it in the right way.

To make things more concrete, you point out several specific benefits that would
come along with switching to this new way of doing things:

• As long as employees are able to preview the changes they make to their time‐
sheet before submitting them, they will know exactly what to expect if and when
their request has been approved. This will help prevent data entry errors due to
miscommunications about what changes are needed.

Remember that workflow design and data modeling go hand in hand | 85

• Assuming that all pending changes are clearly marked, timesheets and other
reports can be immediately updated to reflect the requested changes rather than
continuing to display incomplete or inaccurate information.

• Instead of relying on managers who are spread across half a dozen offices to
aggregate requests and forward them to the payroll manager, all of the requests
will be directly entered into the system by employees and the only step that will
remain is to review and approve the changes. This will cut down on a huge
amount of error-prone busy work for the management staff.

• If there is an open question about a particular change, all of the management
staff as well as the employee who submitted a change request will be looking at
the same information at the same time. If a request needs to be modified, then
that too will be updated in real time and visible to everyone who needs to see it.

• Because this new change request system would move official requests to modify
timesheet data into the time tracking application itself, the paper trail would be
far more complete and consistent than what is currently in place at the company.

• Notifications about accepted and declined changes could be automated, prevent‐
ing the possibility of a decision being made without it being communicated.

• Warnings could be presented to the payroll manager whenever there are still
pending timesheet editing requests at the end of a pay period.

All of these potential benefits hinge on having an implementation that works well
enough to overcome the friction of change. You’ve done a few technical spikes
around these ideas and sketched up some mockups; now it is time to share what
you’ve come up with.

At the heart of your solution is a presenter object that combines two key pieces of
data: the punches that have already been committed for a particular workday, and the
proposed adjustments to that list of punches.

This combined data set will be used to present three important pieces of information:
what the timesheet looked like before a requested change, what it will look like after
the change is applied, and a summary view of exactly what the changes are.

86 | Chapter 6: Data Modeling in an Imperfect World

You point out that the AFTER view of data isn’t just meant to be used to preview the
final state of a request; it can also be updated live as individual PunchAdjustments are
added to a TimesheetRevision. This makes it possible to mimic direct punch editing
in the user interface:

When the employee is ready to submit their request, they are shown the before, after,
and diff views side by side. After reviewing their changes to make sure they are accu‐
rate, they fill in a notes field explaining why the change is needed.

Remember that workflow design and data modeling go hand in hand | 87

Once the request is submitted, it appears alongside all other open requests in the
management panel, looking something like this:

If the request is approved, then a new Punch for 8:30 AM will be created, and the 9:17
AM Punch will be flagged as removed. If it is denied, then the TimesheetRevision
will be closed without any Punch data being modified. In either case, the timesheet
will return to a state in which there are no pending changes.

The critical feature of this workflow is that official time records used for computing
employee paychecks are only ever modified when the payroll manager approves a
change. This achieves the same centralized control and oversight that is baked into
the current process, but streamlines the communication around a change in a way
that should greatly reduce data entry errors.

As you look back on your suggested improvements to the core data model, it
becomes immediately apparent that each minor revision set the stage for the next
improvement. What strikes you about the new design is that it doesn’t make massive,
earth-shattering changes to the original model; it only requires relatively small tweaks
to the way that data is stored and interacted with in the system.

There is no guarantee that this new workflow will be accepted by the business; the
practical constraints of politics and budget always need to be considered. That said,
you’re confident that at least some of these ideas will survive in the new system and
make things better for all of the people using it.

88 | Chapter 6: Data Modeling in an Imperfect World

Recommendations and reminders
• Preserve data in its raw form, rather than attempting to transform it immediately

into structures that closely map to domain-specific concepts. You can always pro‐
cess raw data into whatever form you’d like, but extracting that same information
from complex models can be needlessly complicated.

• As you develop a data model, think through the many different ways the data will
be presented, queried, and modified over time. Very few real projects are limited
to straightforward create, read, update, and delete operations on individual
records…so plan accordingly.

• Make it easy to preview, annotate, approve, audit, and revert transactional data
changes in a human-friendly way. Implementing this type of workflow involves
writing custom code rather than relying on pre-built libraries, but applying the
event sourcing pattern in your data models can simplify things a bit.

• Design data management workflows that respect and support the organizational
culture of the people using your software. Systems that do not take Conway’s Law
into account tend to be crushed under the weight of a thousand workarounds.

Questions and exercises
Q1: The time tracking workflow described in this chapter is a good fit for a business
with a few dozen employees spread across a handful of offices. What would a system
designed for a five-person, single-location business look like? How about a 5,000 per‐
son business with 50 locations?

Q2: Does the software used by and produced by your workplace match its culture and
communication style? If not, what consequences are there for the cultural mismatch
between the business and its software?

E1: Pick any software you have worked on recently and think about how its data
could reasonably become out of sync with reality due to human error. Investigate how
these failure scenarios are currently handled in your application, taking notes on
whatever bright spots and dark corners you find.

E2: Use the event sourcing pattern to model a simple Tic-Tac-Toe game with the fol‐
lowing features: save, restore, undo, and move-by-move game replay. If you want to
take things a little further, also add branching points in the game transcripts.

Remember that workflow design and data modeling go hand in hand | 89

CHAPTER 7

Gradual Process Improvement as an
Antidote for Overcommitment

Imagine that you are a consultant that specializes in helping early-
stage product companies overcome their growing pains.

Your newest client is a few months into a transition from a web development agency
to a product-based business. Their core focus is on a product called TagSail, a mobile-
friendly web application that helps people find nearby yard sales.

The business model for TagSail is straightforward: the site is free to use for anyone
looking for yard sales to visit, but a fee is charged to anyone who posts a listing on the
site. There are also premium features available to paying customers, but like many
early-stage products, TagSail’s offering is a bit scattershot.

For months it looked like the product wasn’t going anywhere, but in recent weeks it
has started to gain traction. This spike in activity has caused major strains at both the
technical and human level, and the team is now at the point where they’re willing to
try anything to prevent themselves from being swept out to sea.

Your mission is to help the TagSail team minimize waste while still delivering a steady
stream of value to their customers. To make this happen, you’ll apply Lean-inspired
process improvements—but custom-fit to the needs of the situation on the ground.

In this chapter…

You will learn some common anti-patterns that lead to struggles in
software project management, and how incremental process
improvements at all levels can alleviate some of those pains.

91

Respond to unexpected failures with swiftness and safety
It’s your first day on site and there is already a minor emergency underway. A reverse
geocoding API is failing, causing all requests for TagSail’s home page to fail with a
generic internal server error.

You ask Erica (the company’s lead developer) to fill you in on the details:
You: I know that this isn’t the time for a long conversation, but can you take just a
minute to get me up to speed on what’s happening here?
Erica: Sure. We had a huge traffic spike this morning because our site was mentioned
in some popular newsletter, and that caused a major slowdown in page load times. We
increased the number of server instances to try to keep up with demand, which helped
for a little while. But then a few minutes ago our reverse geocoding service started
rejecting all requests, completely breaking our home page.
You: So as of right now, no one is able to use the application at all?
Erica: That’s correct. They’ll see a generic “We’re sorry, something went wrong” mes‐
sage that gets served up whenever an internal server error happens. That’s pretty terri‐
ble, because this is by far the most visitors we’ve ever seen in a day.
You: Any idea how much longer it will take to get the site back up and running again?
Erica: I’m not sure yet. We’re still trying to figure out exactly what went wrong with the
reverse geocoding API, and how to get it working again. We think it’s probably some
sort of rate limiting issue.

You continue to observe for a few minutes, and suggest that the team might be focus‐
ing on the wrong question. Rather than looking into fixing the broken API, they
should focus on getting the home page up and running again—even if it means
degrading functionality slightly.

After a brief discussion, the developers come to realize the reverse geocoding is not
essential, anyway. A separate set of APIs detect the visitor’s geographical coordinates
and center the map on their location; the reverse geocoding service is only needed to
turn those coordinates into a meaningful place name that gets shown in the search
box above the map.

Temporarily disabling the reverse geocoding API calls would leave the location search
box blank. This could cause a minor usability headache in situations where the detec‐
ted location was inaccurate, because the first thing the visitor would see would be a
map centered on a specific location that wasn’t their own. But even in that scenario,
the visitor could still manually enter their location into the search box, and every‐
thing would work as expected from there.

Although most of the team seems comfortable with this idea, Sam (the team’s most
experienced frontend developer) pushes back a bit. He suggests the root cause of the
problem could be properly fixed by moving the server-side reverse geocoding API

92 | Chapter 7: Gradual Process Improvement as an Antidote for Overcommitment

calls to the client side, eliminating the rate limiting issues and also fully restoring site
functionality. You briefly discuss the tradeoffs with Sam and Erica:

You: Have you already built the client-side implementation, or are you planning on
writing the code for that right now?
Sam: Well, when we first built this feature I’d suggested doing it that way, and I did a
quick spike to prove the concept. I’m not sure if I still have that code laying around,
but the documentation was easy enough to follow.
You: How long do you think it’d take you to make that change, if we went that route?
Sam: It’d be a quick fix, I think. Half an hour of work at the most.
You: When you did your proof of concept, how realistic of an environment did you
test the work in? Did you simulate lots of simultaneous requests? Did you try it in all
the browsers that the product needs to support? Did you actually expose it to live pro‐
duction traffic?
Sam: Um, no. But this API is provided by FancyMappingService. I’d assume that it’s
pretty solid given how common of a use case this is, and how popular their service is.
You: You know what, I think you’re probably right. But I also worry that experimenta‐
tion under pressure tends to go poorly. If we disable the feature that’ll take the pressure
off, and allow everyone to think more clearly.
Erica: How about a compromise? Sam can begin working on a patch that will move the
reverse geocoding to the client side, and I’ll buy us some time by disabling the feature
for now. That should only take a few minutes, and in the worst case I can revert and
we’d be back to where we are now.
You: That sounds fine, as long as you wait until after the system has returned to a sta‐
ble state to begin experimenting with Sam’s patch.

Erica gets to work on disabling the reverse geocoding feature, which goes smoothly.
She asks you whether or not it’d be a good idea to deploy her fix right away, but you
point out that even in chaotic situations like this, it is better to ask for a quick review
than to rush work out the door that might make a bad situation worse.

Erica opens a pull request for Sam to review before the two of you take a quick walk
around the office just to see how everyone else is holding up.

After waiting for what feels like too long, Sam finally sends Erica an update via chat;
he’s still working on his own patch, which he thinks will be ready to ship in another
15–20 minutes. He also wants to skip the temporary workaround and go straight to
deploying his own fix.

You don’t say anything, but the look on your face makes it clear that you’re not happy
with this response. You walk across the hall to Sam’s office and close the door.

Five minutes later, Erica receives a notification that her branch has been deployed.
Immediately after that, you return to her workspace with Sam in tow. Erica pulls up
the server logs and the three of you monitor the system together.

Respond to unexpected failures with swiftness and safety | 93

As the request logs tick away on the screen, they clearly show that people are success‐
fully loading the home page again. There is a big spike in the number of manual look‐
ups of locations, as expected.

Convinced the site is stable again, Erica asks Sam to resume work on the client-side
patch. With the immediate pressure relieved, there is no rush to get that fix out the
door—so it can be properly reviewed and tested before it is rolled out.

Identify and analyze operational bottlenecks
It’s been a week since your last visit, and the first thing you ask Erica is what new fea‐
tures have shipped in the last few days.

When she tells you, “Nothing, unless you count bug fixes,” it is impossible to miss the
faint look of disappointment in her eyes. You waste no time and get straight to work:

You: So if no new improvements have been rolled out in the last week, what has each
person on your team been up to?
Erica: Let’s see…I’ve started to integrate a few new classified ad networks with our
application.
Sam has been working on a new version of an internal library we’ve built, in prepara‐
tion for some new features we plan to implement next month.
And finally, Sangeeta and David started on an improvement that we planned to ship
this week, but then there were some urgent support requests that needed attention.
They had to put their feature work on pause in order to take care of those issues.
You: What were the urgent support requests?
Erica: They were also related to our classified ad integrations. A few weeks ago we
added support for an ad network that is pretty popular, and it seemed to work well at
first. But it turns out that the new version of their API only supports certain regions,
and for other regions you need to use their old API.
The differences between the two APIs are small enough that we thought we could
share a common client between them as long as we didn’t use any newer features, but
that turned out to be a mistaken assumption.
You: So how did you find out about this problem?
Erica: Through bug reports from users. We don’t have a very good monitoring mecha‐
nism in place for the integrations at this point, so we rely on our support team to be
our eyes and ears.
When something comes up only once or twice, we assume it’s an isolated issue and
then review and prioritize the bug reports weekly. When three or more reports show
up for the same issue, it gets escalated and someone looks into it immediately. That’s
what happened in this case, and it ate up the second half of David and Sangeeta’s week.

94 | Chapter 7: Gradual Process Improvement as an Antidote for Overcommitment

You: But the issue they investigated is sorted out now?
Erica: Well, we think so. We don’t have direct access to several of the systems we inte‐
grate with, and in particular, don’t have staging environments set up for every possible
version of every system we support. Their fixes seem to have sorted out the issue for
the people who filed the bug reports, but it’s a little hard to tell if we’ve managed to
fully fix the compatibility issues or not.
You: This sounds like kind of a nightmare, in general.
Erica: It is! I think we spend at least half of our time in a given week on these integra‐
tions, and I have my doubts that they’ll ever pay off enough to be worth the time we’re
putting into them.

You ask Erica how requests for new integrations are being processed, and she shows
you a tiny form on the customer dashboard that says, “Don’t see your local classified
ad provider? Let us know and we’ll try to support it soon!”

Erica explains that this form generates many requests, but the team is struggling to
fulfill them because the effort to integrate each service is highly variable. Sometimes
there are web-based APIs that are easy to work with, and other times an “integration”
can be made up of an ad hoc email report, a spreadsheet uploaded to an ancient FTP
server, or even a text document delivered to a fax machine.

The word fragile does not even begin to describe TagSail’s classified ad network sup‐
port, but the sales team is (somehow?) convinced that taking on that pain so custom‐
ers don’t have to will pay off in the end. Suspecting that there is something not quite
right here, you start to dig a bit deeper.

Pay attention to the economic tradeoffs of your work
For many phenomena, 20% of invested input is responsible for 80% of the results obtained.

—Pareto Principle

You spend a few minutes reviewing the project’s issue tracker. It turns out that new
requests for integrations are flowing in five times faster than the existing requests are
being closed. When you add in bug reports, the ratio is actually closer to 8:1.

These are bad numbers because it means most requests sit indefinitely in limbo and
the backlog keeps growing and growing. Left unchecked, this will become an even
greater maintenance headache than it already is.

There is a clear process problem with how classified ad integrations are being han‐
dled, but its relative severity depends on how much the work is (or isn’t) paying off
for the company. You ask a few more questions to get a more complete picture:

Pay attention to the economic tradeoffs of your work | 95

1 In case you are curious, here is the real statistical report that forms the backdrop for this made-up story.

You: What is the business model for ad network integrations?
Erica: We bill the customer for whatever the external costs of running the ad are, in
addition to the base cost for listing their yard sale on our own website.
You: So in other words, these integrations don’t provide direct revenue themselves;
they are just one of the benefits offered to customers?
Erica: That’s correct. And honestly, we didn’t originally plan to roll this out nation-
wide. We initially integrated with a single major provider in New England. We were
hoping that might get us some publicity and attract new paying customers, and it man‐
aged to do both. But we didn’t have much of a plan for where to take things next, and
the requests started flowing in.
You: Then let me guess: the sales team got excited by the early results and made a push
toward supporting as many integrations as possible?
Erica: Yep, and without really talking with us about it. The first integration was built in
a single day and was able to serve dozens of cities; it didn’t occur to them that future
integrations may take a lot longer than that to serve a much smaller market.
You: I think I’m beginning to see the problem here.

With Erica’s help, you do a tiny bit of market research. You dig up a statistical report,1

which claims that the average number of yard sales in the United States per week is
around 165,000 and that the leading online classified site posts around 95,000 listings
per week for the whole country.

Erica runs a quick query against TagSail’s data to find that they’re posting roughly
15,000 listings per week, which is just shy of 10% of the nationwide average.

Of the customers posting those listings, about half of them have access to at least one
classified integration. In that group, about one in eight opt into paying the extra fees
associated with getting their ads listed in their local newspaper and online news sites.
That breaks down to an average of roughly 1,000 total listings per week that make use
of the classified integrations feature.

You then ask Erica to break down the average number of listings per integration.
From the raw data she comes up with, you produce the following graph:

96 | Chapter 7: Gradual Process Improvement as an Antidote for Overcommitment

http://pbpbook.com/stats

The story makes sense in hindsight, but it’s an uncomfortable thing to think about:
almost three in five classified ads are handled by the top three integrations, and the
bottom 50% of the integrations handle only a little more than 15% of the listings.
With relatively few customers using the integrations to begin with, supporting these
less popular services is effectively a total waste of time for the development team.

You encourage Erica to report these findings to Jen, the head of the product team. She
hesitates, doubting that her concerns will be considered because they go against a pri‐
ority of the sales team. But when you point out that neither the product team nor the
sales team has access to the data that was used to generate this new report, Erica
warms up to the idea that she might be taken seriously this time around.

Jen and Erica get together to discuss the problem while you listen in and act as a
moderator. Once there is some basic agreement that a huge portion of the integra‐
tions work is mostly going to waste, you lay out some concrete suggestions on how to
bring things back into balance:

Pay attention to the economic tradeoffs of your work | 97

• Focus support efforts on the eight most popular integrations, which cover 83.6%
of all listings per week on average.

• Set a fixed limit on capacity (say 20% to start with) that can be allocated to work
on integrations each month. If the team goes over this limit, report back to the
product team so they can revise their plans accordingly.

• Audit the eight less popular integrations and decide what level of support to offer
for them, if any. Those that are working with very low maintenance overhead
could possibly be kept around, but the high-cost integrations could be gradually
phased out.

• Work with the product team to evaluate potential market sizes and cost of imple‐
menting and maintaining integrations before adding more ad networks. Make
sure that it’s clear that any time spent on integrations is time not spent on other
potentially valuable work.

• Make it clear to customers that there is no guarantee that new classified ad pro‐
viders will be supported, and consider removing the request form entirely.

• As the integrations workload stabilizes, invest in proactive maintenance meas‐
ures like better monitoring, logging, analytics, and testing. Prioritize work on
these preventative measures based on experienced pain points rather than theo‐
retical future needs.

The purpose of this plan is to put an upper limit on the amount of effort that can be
invested in developing an area of the application that’s producing diminishing
returns. Although often overlooked, simple time budgeting is a powerful tool for lim‐
iting the impact of the high-risk areas of a project, and also encourages more careful
prioritization and cost-benefit analysis.

If even some of these changes materialize, life should get a whole lot easier for the
development team while also freeing up a large amount of time to focus on more pro‐
ductive work.

Reduce waste by limiting work in progress
Four weeks pass, and then you join the TagSail team again to see how things are
going. Your first question is whether or not they’ve managed to get the issues around
classified ad integrations under control, and Erica is happy to report that they seem to
have gotten that area of the product to finally settle down.

You then ask what new improvements they’ve shipped since your last visit, and Erica
lamentingly tells you: not much, unless you count bug fixes, chores, and internal code
cleanup. You pull yourself together after a moment of uncomfortable silence and start
to dig in:

98 | Chapter 7: Gradual Process Improvement as an Antidote for Overcommitment

2 For more on this concept, research Eli Goldratt’s Theory of Constraints.

You: I don’t understand. Didn’t you free up about 30% of the team’s capacity and also
radically reduce unplanned urgent work since the last time we talked?
Erica: Yes, but as soon as the product team saw that we were no longer putting out
fires every day, they began to pile on new work to make use of our newfound capacity.
They seem obsessed with the idea of “catching up” with the roadmap we created before
we ran into growing pains, and that has us back in a tough spot again.
You: So what’s happening? Is work being rushed out the door before it’s ready just to
make room for the next set of tasks?
Erica: Nope, that’s not it. What’s happening is new work is being planned and assigned
every week, but the product team is very slow to respond to our questions and sign off
on finished work so we can ship it. We’re also running behind on our own internal
code reviews and QA testing, because the whole team is opening pull requests much
faster than we can close them.
You: Believe it or not, this is a sign of progress. Removing one bottleneck in a process
will naturally cause another one to become visible,2 and it seems like the new con‐
straint is how fast work can be reviewed and approved before it is released. Finding the
right cadence and sticking to it will take some effort, but once that’s taken care of, you
should start to see some real forward momentum.
Erica: If you mean asking the product team to reduce the amount of new work they
assign per week, that’s going to be a non-starter. They have commitments to uphold the
hectic schedule they’d put in place when we were trying to go for a new funding round,
and so there is a ton of pressure all around to deliver new work quickly.
You: But work that is stuck in code review isn’t delivered yet, and neither is work that
sits around in a queue for days or weeks waiting to be approved by a product manager
before it can be shipped. You can have a hundred improvements in a work-in-progress
state, but the only thing generating value is the stuff that ships.
Erica: I agree, but how can we get the product team to change their approach?
You: It’s simple if not easy: we need them to establish the mindset that unshipped code
is not an asset, it’s inventory. Moreover, it’s perishable inventory with a cost of carry.

Erica had explained this problem to the product team before, but she approached it
from a different angle. She emphasized the harmful costs of context switching, and
the stressful feeling of starting new things before finishing existing tasks.

You point out that while those are completely valid concerns, it’s better to frame the
conversation in terms of the negative impact on the team’s ability to deliver new val‐
uable work to customers. To find evidence to support this point, you ask Erica to
show you the team’s Kanban board:

Reduce waste by limiting work in progress | 99

http://pbpbook.com/goldratt

Almost immediately, you notice the right side (which represents deliverable and
delivered work) is nearly empty, while the left and center sections (which represent
planned work and work in progress) are richly populated. There are also many
blocked tasks, which—if unblocked all at once—would cause severe overload.

To solve this problem, you will need to talk to Jen, who is responsible for deciding
what gets worked on each week. Erica gets her on the phone and listens in as you try
to talk through the critical disconnect between the planning rate and delivery rate on
the project:

You: A few weeks ago we made some changes that I hoped would have sped up pro‐
gress, but from what Erica tells me things still aren’t moving all that smoothly. How
does it look from your perspective?
Jen: Good in some ways and bad in others. A good thing is that the developers seem to
be less overwhelmed with urgent bug fixes lately, so they’re focused on productive
work now. But there is still a ton of pressure from the CEO and our investors to rapidly
grow the product, and many of our partnerships are hanging in the balance right now.
You: The main problem for the development team is that new work is being piled on
before they have a chance to ship or even finish their current tasks, and from what I
can tell, they seem to be making a reasonable complaint.
The last significant customer-facing improvement was completed six weeks ago, and
currently there are two new features waiting to be signed off on. But there are twelve
features in a work-in-progress state, and four more are being planned!
Jen: I know, it’s a big mess. What can we do about it?
You: Well, how many new pieces of functionality can you realistically release per week?
Jen: Our original roadmap called for one major improvement along with 2–3 minor
improvements per week. The plan was to send out an email newsletter every Tuesday
to announce the changes and show people how to use them.
You: That seems reasonable on paper, but new work is being planned much faster than
it is getting shipped. As a result, you’re accumulating work in progress, and much of it
is blocked on feedback. The overall flow rate is what matters, and when you have much
more flowing into the system than out of it, that’s how things get overloaded.
Jen: I see what you’re getting at. Part of the problem is that we’re expected to keep the
developers busy. That means that whenever there’s an open slot on the Kanban board,

100 | Chapter 7: Gradual Process Improvement as an Antidote for Overcommitment

3 Donald Reinertsen’s The Principles of Product Development Flow (Celeritas Publishing, 2009) is an excellent (if
abstract) read on this topic.

it’s a signal to us to sit down with a developer and plan a new feature. Now that they’re
moving a little bit faster, this is actually taking up a fair amount of our time.
You: Why not use that time to help unblock the developers who have questions or
need approval? Wouldn’t that help make sure they stay productive and also lead to
more work getting shipped, sooner?
Jen: If I could make those decisions on my own, I absolutely would. But few questions
the developers ask are ones that I can answer directly; some require conversations with
the sales team, others involve customer research, others require talking to vendors and
partners, and for some I even need to sit down with the CEO and talk them through.
Unfortunately, sometimes a question that only takes ten minutes for the right person to
answer can take a week or more to get a response.
You: OK, I understand the problem now. You’re trying to stick to a development pace
that is faster than your feedback bottleneck.
This never works, so we either need to slow down the release cadence, reduce the batch
sizes of the work being done, or speed up the feedback loops. I’d recommend some
combination of all three for best results.3

There is some initial resistance to the idea, but after a lengthy meeting with the CEO,
you and Jen come out with a plan that seems almost too good to be true:

• Put a hold on planning new major features for four weeks to allow some of the
current work in progress to be wrapped up and delivered.

• Change to a release cycle of one new major feature every two weeks, with the first
new release planned for four weeks from now.

• Release minor improvements on a rolling basis, rather than allowing them to
block or be blocked by the newsletter announcements.

• Gradually build up a backlog of up to five release-ready features to serve as a
buffer for when a current major work in progress is blocked.

• Once that buffer is built up, synchronize planning with the release schedule so
that a newly released (or canceled) feature is what triggers the planning of a new
major improvement, rather than trying to max out available developer capacity.

• Review the product roadmap and cut it in half. Involve both the sales team and
the developers in this process to know the costs and benefits of the revised plan.

• Block off four hours company-wide on Monday mornings for coordination time.
During this time, no one will be expected to do heads-down work or attend for‐
mal meetings; instead, the entire time period will be used for helping anyone who
is blocked get unblocked.

Reduce waste by limiting work in progress | 101

The overall goal is to give the entire organization a bit of room to breathe. By letting
backed-up work make its way out the door before cramming in just one more thing, a
more natural and stable rhythm of work will hopefully emerge.

That said, this plan is just a starting point, and you make it clear that Jen and Erica
can expect it to be challenging at times to keep the whole company committed to it.
For that reason, you’ve suggested running it as a twelve-week experiment to start
with, and seeing how things go from there.

Make the whole greater than the sum of its parts
Three months go by like a flash. As you predicted, it hasn’t been easy for everyone to
stick to the plan, and there have been times where some team members have been
tempted to go back to their old way of doing things. But they’ve reluctantly stayed on
course, and some of your ideas have definitely paid off.

To help you get a sense of how things went over the last twelve weeks, the CEO
requested that each department come up with “a rose, a bud, and a thorn” to sum up
the last few months of work.

The roses represents good things that have happened, the buds reflects things that
look promising, and the thorns are pain points:

This may be the first time the organization has created a high-level view of how deci‐
sions affect everyone as a whole in spite of frequently holding inter-departmental
meetings in the past. The fact that they’re doing this exercise at all is a sign of better

102 | Chapter 7: Gradual Process Improvement as an Antidote for Overcommitment

collaboration within the company, even if there are many problems still left to be
resolved.

The four department leads begin an uneasy conversation about each other’s thorns,
but it soon begins to feel like they’re talking past each other. You calmly suggest that
they take a short break before continuing the discussion.

When they return, you ask each person to write down a brief explanation of “why it
hurts” for each of their pain points. You then present all of their responses side by
side, so that they can see their own concerns in the context of the bigger picture:

The discussion picks back up again, but this time around you volunteer to moderate
things to make sure that the group stays focused:

You: I’d like to start with Steve’s concern, because it’s the elephant in the room. The
product is making money, but it’s not cashflow positive—let alone profitable. With
over 20 people on staff here, that’s a scary problem and one that needs to be on the top
of everyone’s minds.
Jen: This is the first time I’ve seen Steve explain this in terms of runway rather than
projected revenue growth. I think everyone in the company is able to understand the
former, whereas the latter seems abstract.
Erica: I don’t know, I’m not sure how the developers on my team would be if I told
them, “In six months some of you may be out of work if we can’t turn this thing
around at a breakneck pace.”

Make the whole greater than the sum of its parts | 103

Lena: I agree, and I’m sure that people from the support team would be first to go,
should we need to downsize. This is terrible news.
Steve: Unfortunately, the sales team isn’t responsible for defining a reasonable growth
rate; we’re tasked with trying to hit the numbers that the CEO and the company’s
investors have laid out for us. We’re staffed for a growth curve that’s much steeper than
our actual results can justify, and it’s been that way for a few months now.
You: But doesn’t that mean that the product roadmap is also tracking based on an
assumed growth curve that just isn’t there? In other words, are we applying a “go big or
go home” strategy when we don’t have the resources to pull that off?
Steve: Well, I guess you can say that. The reason is because 50% growth over six
months is just the bare minimum we’d need to keep extending our runway rather than
shrinking it. To make our investors happy, we’d need to hit something like 150% reve‐
nue growth over the next 180 days.
You: Let’s assume for the sake of argument that there’s no reasonable way to get within
striking distance of that goal. If you cut those projections in half, would it allow you to
shift the focus to selling what is already built for a while rather than gambling on new
major features?
Steve: We’d need to get approval from the CEO, but it may be worth trying for a couple
months. But we’d also need to prove that the approach is working with hard numbers.

You point out to all the non-sales people in the room that in a business that’s not
profitable yet, cash is oxygen—things go bad quickly when it runs out. It’s not a pleas‐
ant thing to think about, but forgetting it is how you go out of business.

At the same time, the financial success of the product is directly tied to how well the
staff as a whole can work together. Building a better, more cohesive product means
balancing the needs of everyone involved in its development, without emphasizing
the needs of one team over the others.

Taking into account everything that was revealed in the “roses, buds, and thorns”
exercise, you help the group come up with a plan that will help them stay aligned with
one another as they go through the next few months of critical work on the product:

• Build a new dashboard that lays out the core AARRR metrics (Acquisition, Acti‐
vation, Retention, Revenue, Referral) that are essential to any business. Having
everyone look at the same reports, and training the entire staff on how to read
them, will make it easier to get a sense of overall product health at a glimpse.

• Figure out where the AARRR pipeline bottleneck is and then have all teams work
together to try out experiments that might help move the needle in that area.
Start with incremental improvements, and gradually work up to more substantial
changes as needed.

• Do an all-hands meeting to review the product onboarding process, both for visi‐
tors looking for yard sales, and customers posting listings. Have each employee
take notes on any areas that can be improved.

104 | Chapter 7: Gradual Process Improvement as an Antidote for Overcommitment

http://pbpbook.com/aarrr
http://pbpbook.com/aarrr

• Look to see if any issues noticed during the onboarding walkthrough overlap
with existing support tickets or items on the product roadmap. Prioritize those
for fixing in the near future, and then use the AARRR metrics to measure impact.

• Set aside one day per week for a single developer to work on “small stuff ” that the
support team feels is worth fixing. Rotate this position each week so that all
developers can get some experience with responding to support issues.

• Schedule time for as much cross-training as possible. Developers and product
designers should sit in on sales calls, sales people should attend some project
planning meetings, and everyone in the company should spend at least an hour
per month doing front-line customer support.

• Identify three features within the next eight weeks that can either be removed
from the product or significantly simplified. Specifically target the features that
appear out of place in the context of the product as a whole.

The common thread that ties each of these individual actions together is a simple
piece of advice: know enough about what everyone else is doing to be able to see how
your own actions fit into the bigger picture.

After discussing this plan, the group expresses a fair amount of optimism about the
coming months. There’s no guarantee of success, but with a common understanding
of the problems at hand, they’re far more aligned than they were just days ago.

With a dramatic tone you say, “My work here is done,” and then ride off into the sun‐
set. As for everyone else, their work has just begun.

Make the whole greater than the sum of its parts | 105

Recommendations and reminders
• When dealing with system-wide outages, disable or degrade features as needed to

get your software back to a usable state as quickly as possible. Proper repairs to
the broken parts can come later, once the immediate pressure has been relieved.

• Look for areas where you are overcommitted and constrain them with reason‐
able budgets, so that you can free up time to spend on other work. Don’t rely
solely on intuition for these decisions; use “back of the napkin” calculations to
consider the economics of things as well.

• Remember that unshipped code is not an asset; it’s perishable inventory with a
cost of carry. Help everyone involved in your projects understand this by focus‐
ing on what valuable work gets shipped in a given time period, rather than trying
to make sure each person on the team stays busy.

• When collaborating with someone who works in a different role than your own,
try to communicate in ways they can relate to. Take an outside view, and think,
“What about this issue is relevant to the person I’m talking to? How does it fit
into the bigger picture of the project?”

Questions and exercises
Q1: Think of a rose, a bud, and a thorn from your current development process.
Would other developers on your team have come up with similar ideas or different
ones? How about the non-technical people involved in your projects?

Q2: Consider the metrics you are using to measure the overall health of your projects.
Do they tell an accurate and meaningful story? If not, why not? If so, will they still be
relevant six months from now, or will you need to measure different things by then?

E1: Choose one project that you’re currently maintaining. Introduce a breaking fail‐
ure into one of its features, and deploy it to a testing environment. Without “fixing”
the broken feature, find a way to restore as much system functionality as possible by
working around or hiding the problem with no more than 15 minutes of work.

E2: Keep a work journal for four weeks, listing out your main activities each day. Pick
the three projects or recurring tasks that you suspect had the greatest payoff for the
time invested. What sets these particular activities apart from the others in your jour‐
nal? Is there a way you can scale your successes?

106 | Chapter 7: Gradual Process Improvement as an Antidote for Overcommitment

CHAPTER 8

The Future of Software Development

Just as in the previous chapters, you’ll find a short story in the pages that follow. But
since this chapter also serves as the book’s epilogue, I’d like to step out of my narrator
role for a moment to talk about something important.

I wrote this book because I believe the shift away from “programmer as coding spe‐
cialist” is inevitable. If that’s true, then our entire field will need to prepare itself for
the not-so-distant future when “programmer as technically skilled solver of ordinary
human problems” becomes the norm.

I’ve been writing code for a couple decades now, so this idea feels radical—and also
quite liberating. The interesting parts of programming to me have always been the
problem-solving, communication, and human-centric aspects of things; code was just
the most effective tool I could find to serve those purposes.

The stories in this book have been written without code samples, but they have the
explicit goal of helping both you and me focus on the many interesting higher-level
challenges we face in software development. But in each scenario, there was a whole
lot of code being written behind the scenes; it just wasn’t what we were focusing on.

To complete our journey, we’ll now go a step further and imagine a world in which
machines do most of the coding. I promise to tie this back to some practical ideas
when we wrap up, but we might as well have some fun before the curtain closes.

In this chapter…

You will catch a glimpse of what programming might be like if we
could focus purely on problem solving and communication rather
than writing code.

107

1 Despite the futuristic framing of this chapter, open city government data is readily available today. In fact, the
examples in this chapter are based on SeeClickFix data.

Imagine that you are in the center of a room that is nearly empty. It
has been your office for the last five years, but it still reminds you of
old science fiction movies every time you walk into it.

To make use of this workspace, you only need to wear a special set of goggles and
gloves; the many sensors, cameras, speakers, and other electronic components that
are buried in the walls take care of everything else.

Through your goggles, the room presents itself as a lovely corner office in a high-rise
building with a perfect city view. That serves as a nice backdrop, but what really mat‐
ters is the work you’ve come here to do.

You call out to your virtual assistant (Robo) and let it know that you’re ready to start
your day. It immediately springs into action, and helpfully reminds you of what you’re
supposed to be working on:

Robo: Hi there! Carol from FutureTown’s Department of Transportation has asked you
to prepare a report that will help her set the budget for sidewalk repairs for the rest of
the year. Should I load my notes on that project so that we can get started?
You: Yes. We’ll begin with some of the public data available about city service requests.
Please show me the service codes table from FutureTown’s 311 API.
Robo: This table is a simple set of key/value pairs. Take a look at the center window in
front of you if you’d like to review the whole thing, or let me know the specific key you
are looking for and I will highlight it for you.
You: I’m looking for sidewalks.
Robo: I found a match for “Sidewalks and Curb Damage” with a value of 117.
You: Yes. That’s the one!

You reach out in front of you and pinch the air, right about where the “Sidewalks and
Curb Damage” table row has been projected through your goggles. As you do this, it
turns into small sticky note, which you place in your (virtual) pocket. You then swat
at the large data table displayed front and center, and it vanishes instantly.

You ask Robo to show you a summary of all of the data sources provided by Future‐
Town’s 311 service, and it fills the left wall of your office with documentation. You
grab the sheet describing the “reported issues” table, and then sit down to think.

You’re building this report because FutureTown is trying to figure out how much
money to spend on sidewalk repair, and where in the city to spend it. As a starting
point, some measure of supply and demand would probably help—which is why
you’re looking at the public 311 data.1

108 | Chapter 8: The Future of Software Development

http://dev.seeclickfix.com

You don’t know exactly what you are looking for yet, but you decide to start with a
few visualizations and see how that goes.

You: Robo, let’s start by doing some work with this “reported issues” table. I have the
data sheet in my hand, and you can use that for your queries.
Robo: Alright. What would you like me to do with this data source?
You: It has open and closed timestamp fields. Please use those to create a cumulative
flow graph for the last five years, broken down by week. I’d like this visualized as both a
figure and a data table, please.
Robo: All set! Please check the display and tell me if it looks right.
You: Whoops, I missed something! Robo, please only show records where the “service
code” field matches the number on this sticky note.
Robo: Beep-boop-beep! Done.

You take a look at the numeric table just as a sanity check, and it looks roughly like
what you’d expect. Then you look at the graph:

The huge spike in new complaints from citizens in the last few years makes it easy to
see why coming up with a budget is so challenging for FutureTown: they don’t have
nearly enough resources to fully solve the problem, so they need to try to spend what
they do have as wisely as they can.

The Future of Software Development | 109

You ask Robo to dump its research files, and in an instant the right wall of your office
lights up with dozens of pages. They include a combination of materials you had
looked up yourself the last time you did work for FutureTown, documents that Carol
had shared with Robo when she first requested work on this project, and additional
resources that Robo found itself using its internal recommendations engine:

You: Thanks for the literal wall of text Robo. Please give me a one-paragraph summary
of what I’m looking at.
Robo: FutureTown’s annual sidewalk budget is broken down by neighborhood. Neigh‐
borhoods with a high number of requests for repairs to sidewalks that have a pavement
condition index (PCI) ranging from 20 to 60 on a scale of 100 are given the highest
priority in budgeting. Below a PCI of 20, the cost of repair is prohibitively expensive
for the current operating budget. Above 60, the sidewalks are considered to be service‐
able enough to defer repairs.
You: Thank you. Please highlight any document that mentions the pavement condition
index, as well as any documents that mention neighborhoods.
Robo: BEEEEEEEP. Done.

As smart as Robo seems at times, its research features are equivalent to that of a pow‐
erful search engine combined with a decently organized knowledge base. The think‐
ing part is still left to humans, so this is where the real work begins.

You spend a few minutes looking over the highlighted documents, trying to get some
inspiration. One of them is a detailed assessment of pavement conditions at hundreds
of locations around the city, carried out last year by the city’s engineering department.
You snatch it up like the low-hanging fruit that it is, and toss it in the general direc‐
tion of your main working space, where it snaps cleanly to the wall.

When you ask whether the project’s research files include geospatial data for Future‐
Town’s neighborhoods, Robo responds sharply that no match was found. But when
you restate your question to ask whether there is geospatial data about FutureTown’s
neighborhood boundaries available on the Internet, the first match is the set of shape
files you were hoping to find.

The data in the engineering report consists of street addresses and the PCI values for
the sidewalk at each address. You ask Robo to first convert the street addresses into
geographical coordinates, and then use those coordinates to match against the shape
files for FutureTown’s neighborhoods. This generates a new data table with the neigh‐
borhood name appended to each row.

Once this table is generated, you run some statistics that rank each neighborhood
based on the proportion of samples in the 20–60 PCI range. This part of the equation
will probably need to be checked and tweaked by city officials, but you provide this as
a starting point for them to work with.

110 | Chapter 8: The Future of Software Development

Finally, you go back to the cumulative flow graph you generated earlier and give Robo
some instructions on how to group the reported issues by neighborhood as well. Not
wanting to repeat yourself verbally, you switch to visual scripting mode, copy the rel‐
evant chunk of logic for mapping street addresses to neighborhoods, and apply the
same transformation to the location field on reported sidewalk issues.

After applying some finishing touches, you end up with historical graphs of supply
and demand for sidewalk repairs, broken down by neighborhood, sorted by their
pavement condition rankings. You place the top six on the main wall of your work‐
space, and hang the rest off to the sides.

You send a notification to Carol that the report is ready for review, and within
minutes, she is (virtually) standing alongside you, seeing the same thing you see:

You briefly explain the logic behind your reports, while she walks around and pinches
a few of the graphs to zoom in on different timescales. As the two of you chat, Robo
records a video of your meeting and automatically transcribes the text of your con‐
versation for future reference.

Carol: This is a very helpful starting point. I think the next step will be to look at these
neighborhoods that are highly ranked, and dig in at the city block level.
Sidewalk equipment is costly to move, so the closer together the repairs are, the
cheaper it is for us to do more of them. The ideal scenario is when you have a bunch
on one street, because then the equipment doesn’t need to be transported at all.
You: Alright, I can put something together for that. I assume that someone from the
engineering department can give me some hard numbers on how to weight things
based on how close together the jobs are?

The Future of Software Development | 111

Carol: I think so; I’ll have them forward some documents over to Robo. Also, just this
morning I was talking with a friend over in BiggerFutureCity and they said that they’d
be willing to pass along their research files, as long as we agreed to share our own in
the future. You may want to look through those and see whether there are any useful
resources that we can use for our own reports.
You: Will do. Is there anything else I can help you with?
Carol: Oh, I hate to bring this up, but how many hours have you billed for this report
so far? The city is pretty cost-conscious.
You: A little over an hour. I expect that if I do the block-by-block analysis and maybe
dig through those other research files, we’ll be done by midday and the total cost will
come to about three hours.
Carol: That’s perfect, thank you!

Carol disappears into thin air. Moments after she exits, your virtual workspace also
dissolves, and you’re left wherever you happen to be…with a programming book in
front of you, and an author with a strange sense of humor saying his own goodbyes.

* * *

The story you just read describes my dream of what programming
could be like once we finally claw our way out of the Turing tarpits.

The fictional workflow I’ve described in this chapter is just one possible human-
computer interface that could satisfy my real goal: to communicate with computers at
a high enough level to stay in problem-solving mode rather than being dragged down
into thinking about the nuances of code.

Throughout this book, I’ve discussed many ways to work around the limitations of
our tools, but I fully admit that the suggestions I’ve provided only partially relieve the
friction we deal with day to day. In order for our industry to reach its full potential,
we will need a development toolchain that is designed from the ground up to support
human-centric values.

There are a handful of bright spots to take inspiration from that already exist today,
albeit in specific problem domains. The humble spreadsheet is perhaps the best
example the world has seen so far, and it’s the source of inspiration for the interac‐
tions in this story:

• In a spreadsheet, if you want to sum up a column of numbers, it takes a only a
couple of clicks and keystrokes. You think the thought, “I want to sum up these
values,” you visually select them, type the word SUM, and the sum appears where
you typed the word.

• If you want a time series graph, you select a column of timestamps and a column
of corresponding values, and then you click a picture of something that looks like
a time series graph.

112 | Chapter 8: The Future of Software Development

• If you want to share your work with someone else, you send along your file or
give them access to a shared document—and they see what you see.

There is no separation between the data of a spreadsheet and the functions processing
the data, no distinction between source code and a running program—it’s just a
document, but a very powerful kind of document that does what you tell it to do,
without an awkward mental translation layer to some lower-level language.

Developer tools in modern web browsers have a similar feel to them, in that they let
you directly interact with the page you’re on, seamlessly blending the concept of a
“document” with its underlying object model.

To find an <h1> tag in a document and tweak its styling is not a complicated task for
anyone with basic HTML skills, but the time and context lost in doing so makes it feel
like coding. By contrast, clicking on a header directly in the web browser, and then
getting dropped right into an inline editor that lets you inspect the properties of the
element and tweak it live has a totally different feel to it. It lets you have the thought,
“I want to increase the font size of this header,” and then work at that level rather than
simulating the DOM in your head as you edit a static text file.

So how do we apply a similar mode of interaction to the sidewalk reporting problem I
described in the main story for this chapter? The short answer is that we can’t—at
least not with our current development tools. But the good news is that there aren’t
any hard technical limits standing in our way, just the collective inertia of using pro‐
cesses and tools that weren’t designed for modern application development.

* * *

As a thought experiment, let’s quickly revisit the sidewalks report described earlier,
setting aside all the virtual reality and artificial intelligence bells and whistles. Here
are just a few totally generic operations involved in running that sort of analysis:

• Geocoding street addresses to geographic coordinates.
• Matching a geographic coordinate to a region that contains it.
• Exporting data tables from web services.
• Generating a cumulative flow graph from a data table.
• Running basic numeric aggregations (rankings, sums, averages, etc.)

In theory, a decent toolkit would make each of these operations something that could
be done effortlessly, much in the way that we might put together a spreadsheet or
tweak styles with a browser’s development tools. In practice, it is much more compli‐
cated than that.

Because I’ve built reports quite like what was described in the story, I can tell you that
there are many tools out there that can help with each of these tasks, and even in

The Future of Software Development | 113

cases where you decide to build the tools yourself, you don’t need to move mountains
to get the job done.

But is it a fluid and natural process to use our existing tooling to run this sort of
report? Absolutely not! It’s a tedious exercise in pipe fitting between this third-party
library and that language’s core functions, this data format and that web service’s pro‐
tocol. The final product ends up being tied together with shoestrings and glue, unless
you want to dig down into the code and “do things right,” which comes at a high cost
for questionable value.

And because of all of this incidental complexity, any real implementation of this sim‐
ple report would involve asking the question: “Wait, what problem am I trying to
solve again?” over and over as you struggled to keep the context fresh in your mind.

* * *

Although the field of software development has a long way to go, I do expect things
will get better in the years to come. It’s true that some folks among us are here solely
for the tools, the code, the intellectual challenge of it all. But for the rest of us, that’s a
matter of necessity and the environment we work in, not a defining characteristic of
who we are.

My fundamental belief is that programmers are no less concerned for human inter‐
ests than anyone else in the world; it’s just hard to make that your main focus in life
when you spend a good portion of your day chasing down a missing semicolon, read‐
ing source code for an undocumented library, or staring at a binary dump of some
text that you suspect has been corrupted by a botched Unicode conversion.

And my great hope is that if we fight against the influence of our rough, low-level,
tedious tools and gradually replace them with things that make us feel closer to the
outcome of our work, then our tech-centric industry focus will shift sharply and per‐
manently to a human-centric outlook.

To put this into perspective, take any modern challenge and roll it backward to a time
when code was written in assembly language and data was stored in manually packed
binary blobs. In this sea of numbers and logical constraints, it is easy to treat the
whole of software development like a pure math problem.

Such an abstract space is not a natural environment for empathy to arise from, so you
could hardly fault someone who would unquestioningly fulfill their duties, particu‐
larly if they found their work to be intellectually rewarding for its own sake.

Now wonder: what will the next generation of programmers who come after us see
when they look back at our times?

Take the actions today that will give you the reputation tomorrow that you’ll be
proud to have. For each of us, this will be different. But it is essential to consider the
question, and there is much that we can do to help each other along the way.

114 | Chapter 8: The Future of Software Development

For my part, I wrote this book. I hope that you’ve enjoyed it, and that it has given you
some ideas that you can carry along with you throughout the rest of your journey.

Thanks for reading, and good luck with your work!

PS: If you have a question about this book or anything else you’d like to discuss, feel
free to email me (gregory@practicingdeveloper.com), or tweet @practicingdev.

The Future of Software Development | 115

2 Fair warning—this puzzle is harder than the first two. But if you figure out what the “functions” are, then
translate those into pseudocode, you can still solve the problem on paper. Manually walking through each
operation will be tedious, so only do that as much needed to check your work.
Writing a program to decode the message will be more efficient, but you will learn more if you gradually dis‐
assemble the low-level operations into higher-level functions by hand. Or do both if you’d like. :-)

Well done! You just finished Programming Beyond Practices.

As a parting gift, please enjoy this final challenge.2

Life is a mystery, just one big “what if?” But the joy is that we alone set the direction
we choose. Sometimes we may gain and sometimes we may lose. But with each pass‐
ing day we’re a bit less confused.

116 | Chapter 8: The Future of Software Development

Acknowledgments

A book is an endless tapestry of hard work, with only part of it weaved by the author.
The unique nature of Programming Beyond Practices has made it especially dependent
on the support and contributions of others, and there is no way I would have been
able to ship it on my own.

First and foremost, I want to thank you. This book is meant to serve its readers well,
but you still had to do all the heavy lifting. The fact that you have given me your time
and attention is more than I could ever ask for, and I cannot thank you enough.

The work was developed under the watchful eye of not one but three top-notch
developmental editors: Jeff Bleiel, Brian MacDonald, and Mike Loukides. Mike con‐
vinced me to write this book in the first place, and provided support and feedback
throughout the project. Brian helped out in the early stages, and Jeff worked tirelessly
with me through the most challenging phase in any writing project: turning a hap‐
hazard manuscript into a proper book that’s worth reading.

I also am lucky to have had an incredible technical review team, which included
Michael Feathers, Nell Shamrell, and Saron Yitbarek, as well as an anonymous partic‐
ipant who provided very helpful feedback. Ward Cunningham also provided some
brief but thoughtful notes on an early draft of the work.

Stephanie Morillo, the book’s copyeditor, turned an awkward jumble of words into
something worth serving up to you. This weird little book needed someone extraor‐
dinarily talented to fill this role—and Stephanie fit the bill perfectly.

Kristen Brown guided the production process for this book with an extreme level of
precision, care, and patience. This was one of the things I had been most worried
about when I set out to write this book, but my fears quickly went away as soon as we
started working together.

117

Despite its small size, this book is the product of thousands of conversations and
shared experiences I’ve had with hundreds of thoughtful and generous people
throughout the world. Below I’ve acknowledged a few dozen of them, but know that
it is only a partial list of people who helped bring this work about:

Ben Berkowitz • Sarah Bray • Florian Breisch • Melle Boersma • Ben Callaway •
Christian Carter • Joseph Caudle • Mel Conway • Kenn Costales • Liam Dawson •
Donovan Dikaio • Brad Ediger • Martin Fowler • Gregory Gibson • Melissa Gibson •
Eric Gjersten • James Gifford • James Edward Gray II • David Haslem • Brian Hughes •
Ron Jeffries • Alex Kashko • Kam Lasater • Tristan Lescut • Alexander Mankuta •
Joseph McCormick • Steve Merrick • Alan Moore • Matthew Nelson • Carol Nichols •
Calinoiu Alexandru Nicolae • Stephen Orr • Bruce Park • Srdjan Pejic •
Vanja Radovanovic • Donald Reinertsen • Pito Salas • Clive Seebregts • Evan Sharp •
Kathy Sierra • Derek Sivers • Danya Smith • Hunter Stevens • Jacob Tjørnholm •
Gary Vaynerchuk • Jim Weirich • Solomon White • Jia Wu • Jan Žák

A handful of the people listed above have inspired me indirectly through their own
work, but the vast majority have spent some significant time talking with me about
ideas and projects that inspired the topics I’ve spent the last year of my life research‐
ing and writing about.

Last but certainly not least, I’d like to thank everyone else on staff at O’Reilly Media
who had a hand in creating this book, and Tim O’Reilly for creating an excellent pub‐
lishing company in the first place. This was a strange and difficult little project, but I
was given all the support I needed and then some to bring it to market.

118 | Acknowledgments

O’Reilly Media, Inc.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training. Safari Books Online offers a
range of plans and pricing for enterprise, government, education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

119

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/programming-beyond-practices.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

120 | O’Reilly Media, Inc.

http://bit.ly/programming-beyond-practices
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Index

A
abstractions, hidden, 71-72
assumptions, checking, 8
audit logging, 78, 80
authentication systems, failure of, 35-36

B
bottlenecks, operational, 94
bottom-up software design, 59-74

avoiding unnecessary temporal coupling
between objects, 64-67

experimentation to discover hidden abstrac‐
tions, 71-72

extraction of reusable parts/protocols, 67-71
implementation of minimal slice of func‐

tionality, 61-64
limitations of, 73
nouns and verbs of problem space, 60

C
changes, incremental, hidden dependencies in,

21-30
code

extraction of reusable parts/protocols, 67-71
reuse of in new context, 27-29

conceptual modeling, physical modeling and,
76-88

context switches, 27-29, 99
Conway's Law, 83-85
Conway, Melvin, 83
Counting Cards programming puzzle, 44-56
coupling, temporal, 64-67

D
data management, Conway's Law and, 83-85
data modeling, 75-89

Conway's Law and data management practi‐
ces, 83-85

decoupling conceptual from physical, 76-88
designing explicit model for tracking data

changes, 78-83
workflow design and, 75, 85-88

data synchronization, real-time, 26-27
data validation, 48-50
deductive reasoning, 51-52
defects, rapid prototyping, 7-8
dependencies, hidden (see hidden dependen‐

cies)
developer tools, 113

E
educational journal, 31-42
emails, modification to contents, 32-34
empathy, 114
employee time tracking system, 76-78
event sourcing, 82
exploratory programming, 1-18
external services

changes or discontinuation of, 34-38
integrations with (see service integrations)

F
failures, unexpected, 92-94
feature flipping, 24
feedback, 14-17
Five Whys, 34
functionality

121

implementation of minimal slice of, 61-64
wireframe diagrams for setting expectations

about, 2-4
future issues, 107-116

G
gradual process improvement

as antidote for overcommitment, 91-106
economic tradeoffs, 95-98
identification/analysis of operational bottle‐

necks, 94
making whole greater than sum of parts,

102-105
unexpected failures, 92-94
waste reduction by limiting work in pro‐

gress, 98-102

H
hidden abstractions, 71-72
hidden dependencies

avoiding non-essential real-time data syn‐
chronization, 26-27

code reuse in new context, 27-29
fallacy of standalone features, 22
in incremental changes, 21-30
of two features on a screen, 23-27

HTML tags, as potential trouble source, 28

I
incremental changes, hidden dependencies in,

21-30
incremental process improvement (see gradual

process improvement)
input data validation, 48-50
integration of external services (see service

integrations)
issue trackers, 95

J
journal, educational, 31-42
just-in-time workflow, software simulation of,

60-73

K
knowledge base, incorporating wiki into, 21-30

L
live test system, 4-6
login systems, failure of, 34-36

M
maintenance

and fallacy of purely internal concerns, 40
problems from poorly coded robots, 38-40

mentoring, programming puzzles as part of,
43-57

mistakes, rapid prototyping, 7-8
mock objects, outdated, 36-38
modeling of data (see data modeling)
music video recommendations system, 1-18

N
needs

of project, 2
unique, as source of trouble, 32-34

O
objects, temporal coupling between, 64-67
operational bottlenecks, 94
overcommitment, gradual process improve‐

ment as antidote for (see gradual process
improvement)

P
pain points

in "rose, bud, and thorn" exercise, 102
of service integrations, 31-42

physical modeling, conceptual modeling and,
76-78

problem solving
careful description of problem, 44
checking work with deductive reasoning,

51-52
developing rigorous approach to, 43-57
solving simple problems to understand

more difficult ones, 52-56
validation of input data, 48-50
working problem by hand before writing

code, 46-48
product development, process improvement in

(see gradual process improvement)
production codebase, extension to fit new pur‐

pose, 21
production systems, prototypes vs., 13

122 | Index

production workflow, just-in-time, 60-73
programmers, evolving role of, 107
project ideas, rapid prototyping for exploring

(see rapid prototyping)
project, understanding needs of, 2
proof of concept, 1-18
prototypes, production systems vs., 13
puzzles, programming, 43-57

R
rapid prototyping

and project's needs, 2
checking assumptions, 8
defects and repairs, 7-8
feature design for feedback collection, 14-17
for exploring project ideas, 1-18
limiting scope of work, 9-13
live test system for, 4-6
prototypes vs. production systems, 13
wireframe diagrams for setting expectations

about functionality, 2-4
recommendations systems, 1-18
repairs, rapid prototyping and, 7-8
reuse of code

extraction of reusable parts/protocols, 67-71
in new context, 27-29

risk mitigation, 22
robots, poorly coded, 38-40
rose, bud, and thorn exercise, 102

S
scope, limiting for rapid prototyping, 9-13
sequence diagram, 66
service integrations

and external services change/discontinua‐
tion, 34-38

and fallacy of purely internal concerns, 40
and outdated mocks in tests, 36-38
identifying pain points of, 31-42
maintenance problems from poorly coded

robots, 38-40
unique needs as source of trouble, 32-34

service integrations, identifying pain points of,
31-42

services, external (see external services)
sidebars, 23-25
sidewalk repairs, hypothetical future scenario

for, 108-112

simple problems, solutions as key to difficult
problems, 52-56

smoke tests, 32
software development

bottom-up (see bottom-up software design)
future issues, 107-116

spreadsheet, as inspiration for future
approaches to programming, 112

standalone features, hidden dependencies and,
22

T
TagSail (fictitious yard sale app), 91-105
temporal coupling, 64-67
testing

for rapid prototyping, 4-6
outdated mocks in, 36-38

third-party systems (see service integrations)
time tracking system, 76-78
timestamps, 24
timing model, 66
top-down design

as unrealistic view of real design, 59
bottom-up design and, 73

V
validation, input data, 48-50
video recommendations system, 1-18
virtual assistant, 108-110

W
waste reduction, limiting work in progress for,

98-102
web crawlers, poorly coded, 38-40
wikis, 21-30
work in progress, limiting, 98-102
workflow design

data modeling and, 75, 85-88
just-in-time workflow, software simulation

of, 60-73
waste reduction by limiting work in pro‐

gress, 98-102

Y
YAGNI (You aren't gonna need it), 5
yard sales, TagSail app and, 91-105

Index | 123

About the Author
Gregory Brown has run the independently published Practicing Ruby journal since
2010, and is the original author of the popular Prawn PDF generation library.

In his consulting projects, Gregory works with stakeholders in companies of all sizes
to identify core business problems that can be solved with as little code as possible.

Gregory’s relentless focus on the 90% of programming work that isn’t just writing
code is what led him to begin working on Programming Beyond Practices.

Colophon
The animal on the cover of Programming Beyond Practices is a Peruvian spider mon‐
key (Ateles chamek), also known as a black-faced spider monkey. Despite its name,
this primate can be found in Brazil and Bolivia in addition to Peru. It lives in lowland
forests, using long limbs and a prehensile tail to swing through the upper canopy
with remarkable agility.

The Peruvian spider monkey is a slender animal with dark fur and a black face. Males
and females are generally the same size, with an average weight of 15–20 pounds and
length of 24 inches (not counting the tail, which can add up to 36 more inches). They
are well equipped for life in the treetops, with elongated fingers, a highly flexible
shoulder joint, and a partially hairless tail tip that provides a stronger grip on
branches. The spider monkey’s diet is largely made up of fruit, supplemented with
leaves, insects, eggs, honey, and small animals like birds or frogs.

As with most primates, Peruvian spider monkeys live in social groups. The size of the
group can change seasonally, as females leave to give birth and return a few months
later. Newborn spider monkeys become independent at around 10 months of age, but
are not sexually mature until they are 4 years old. These are very vocal animals, with
calls that include screams, barks, and horse-like whinnies. They also signal each other
by swinging their arms and shaking tree branches.

Like many species native to the rainforest, the Peruvian spider monkey is endangered.
Beyond the loss of habitat caused by logging and agricultural activity, it and other
large animals are overhunted for the Amazonian bushmeat trade.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from a loose plate, source unknown. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	About This Book
	The Journey

	Chapter 1. Using Prototypes to Explore Project Ideas
	Start by understanding the needs behind the project
	Use wireframes to set expectations about functionality
	Set up a live test system as soon as you start coding
	Discuss all defects, but be pragmatic about repairs
	Check your assumptions early and often
	Limit the scope of your work as much as possible
	Remember that prototypes are not production systems
	Design features that make collecting feedback easy

	Chapter 2. Spotting Hidden Dependencies in Incremental Changes
	There’s no such thing as a standalone feature
	If two features share a screen, they depend on each other
	Avoid non-essential real-time data synchronization
	Look for problems when code is reused in a new context

	Chapter 3. Identifying the Pain Points of Service Integrations
	Plan for trouble when your needs are off the beaten path
	Remember that external services might change or die
	Look for outdated mocks in tests when services change
	Expect maintenance headaches from poorly coded robots
	Remember that there are no purely internal concerns

	Chapter 4. Developing a Rigorous Approach Toward Problem Solving
	Begin by gathering the facts and stating them plainly
	Work part of the problem by hand before writing code
	Validate your input data before attempting to process it
	Make use of deductive reasoning to check your work
	Solve simple problems to understand more difficult ones

	Chapter 5. Designing Software from the Bottom Up
	Identify the nouns and verbs of your problem space
	Begin by implementing a minimal slice of functionality
	Avoid unnecessary temporal coupling between objects
	Gradually extract reusable parts and protocols
	Experiment freely to discover hidden abstractions
	Know where the bottom-up approach breaks down

	Chapter 6. Data Modeling in an Imperfect World
	Decouple conceptual modeling from physical modeling
	Design an explicit model for tracking data changes
	Understand how Conway’s Law influences data management practices
	Remember that workflow design and data modeling go hand in hand

	Chapter 7. Gradual Process Improvement as an Antidote for Overcommitment
	Respond to unexpected failures with swiftness and safety
	Identify and analyze operational bottlenecks
	Pay attention to the economic tradeoffs of your work
	Reduce waste by limiting work in progress
	Make the whole greater than the sum of its parts

	Chapter 8. The Future of Software Development
	Acknowledgments
	O’Reilly Media, Inc.
	Safari® Books Online
	How to Contact Us

	Index
	About the Author
	Colophon

